
Can Systems Explain Permissions Better? Understanding Users’ Misperceptions
under Smartphone Runtime Permission Model

Bingyu Shen1, Lili Wei2, Chengcheng Xiang1, Yudong Wu1,
Mingyao Shen1, Yuanyuan Zhou1, and Xinxin Jin3

1University of California, San Diego 2The Hong Kong University of Science and Technology 3Whova, Inc.

Abstract
Current smartphone operating systems enable users to man-

age permissions according to their personal preferences with
a runtime permission model. Nonetheless, the systems pro-
vide very limited information when requesting permissions,
making it difficult for users to understand permissions’ capa-
bilities and potentially induced risks.

In this paper, we first investigated to what extent current
system-provided information can help users understand the
scope of permissions and their potential risks. We took a
mixed-methods approach by collecting real permission set-
tings from 4,636 Android users, an interview study of 20 par-
ticipants, and large-scale Internet surveys of 1559 users. Our
study identified several common misunderstandings on the
runtime permission model among users. We found that only
a very small percentage (6.1%) of users can infer the scope
of permission groups accurately from the system-provided
information. This indicates that the information provided by
current systems is far from sufficient.

We thereby explored what extra information that systems
can provide to help users make more informed permission
decisions. By surveying users’ common concerns on apps’
permission requests, we identified five types of information
(i.e., decision factors) that are helpful for users’ decisions. We
further studied the impact and helpfulness of the factors to
users’ permission decisions with both positive and negative
messages. Our study shows that the background access factor
helps most while the grant rate helps the least. Based on
the findings, we provide suggestions for system designers to
enhance future systems with more permission information.

1 Introduction
Smartphones are pervasive today [23, 52]. The latest ver-

sions of the market-dominating smartphone operating sys-
tems, Android and iOS, both provide runtime permission
management to let users decide to allow or deny apps’ re-
quests to access private data, such as photos, contacts [16,19].
However, users can make wrong permission decisions un-
intentionally, which may cause severe privacy leaks in the

runtime permission model as shown in recent security in-
cidents [13, 17, 18, 20]. For example, in March 2018, it was
reported that Android app of Facebook collected and uploaded
users’ call history and SMS messages to their servers if users
grant the app permissions to read these data. Users were not
aware of this even though they granted the permissions them-
selves. Some of them surprisingly found it out after down-
loading and inspecting the data collected by Facebook [17].

Compared with the previous install-time model, the adop-
tion of the runtime permission model introduces three new
challenges for users to understand app permissions. First, the
runtime permission model provides a shorter and briefer de-
scription for permissions requests as shown in Figure 1. Users
can hardly understand what private data will be accessed from
the descriptions. Second, the runtime permission model al-
lows users to manage permissions in groups. Users need to
understand the details of private data granted in each group to
make informed decisions (c.f. §2.1). Third, the change from
install-time model to runtime model in Android raises new
security risks: old apps can bypass the runtime permission
mechanism and directly obtain all the requested permissions
after installation on Android 6-9.

Smartphone systems currently play a neutral and passive
role in helping users understand and manage the permissions:
they only provide brief descriptions about the permission
groups in permission request dialogs. These descriptions typ-
ically contain incomplete information. Figure 1 gives two
examples of permission request dialogs on Android 9.0 and
iOS 13 respectively. In Figure 1 (a), the dialog informs users
the permission will “allow Snapchat to make and manage
phone calls”. From this notice, ordinary users cannot know
that the app can also collect the phone’s unique ID (i.e., IMEI)
once the permission is granted. In Figure 1 (b), the dialog
informs users that the permission will “allow Twitter to access
location”. However, it does not tell whether the location infor-
mation will be uploaded to the server or how it will be used.
Such simple descriptions can mislead ordinary users. Our
study shows that only 6.1% of users can correctly understand
all the capabilities in the permission groups (cf. §5.1).

USENIX Association 30th USENIX Security Symposium 751

(a) Android (b) iOS

Figure 1: Examples of permission request dialogs on Android
and iOS. In Figure 1(a), the dialog only shows that Snapchat re-
quests a permission to make and manage phone calls; however, it
does not inform users that it will also allow the app to access phone
status and ID (i.e. IMEI). In Figure 1(b), the usage descriptions
provided by the Twitter app only give obscure descriptions of how
location data are used. App developers may have incentives not
to honestly and comprehensively disclose their entire access and
usage of user data [50, 57]. From these brief descriptions, users
can hardly have a comprehensive understanding of the risks of
granting these permissions.

To better explain permissions, smartphone systems give
app developers the opportunity to provide explanations when
requesting permissions [16, 19]. However, previous stud-
ies [50,57] found that this has several problems. First, app de-
velopers may not provide correct explanations. Liu et al. [50]
found that a significant proportion of runtime explanations
state that the app only requests basic permissions yet, in fact,
the app requests more permissions than the claimed ones.
Second, most developers tend to only describe the benefits
to the users, but hide the details on what information will be
collected and how the information will be used [57]. This
implies that users can be misled if the system solely relies
on app developers to explain the permission requests. It is
necessary to have systems provide more accurate information
to help users understand and manage permissions.

Besides, it is also unclear whether systems have effectively
notified their users with the risks induced by permission model
changes. Android changed from the install-time permission
model to the runtime model in 2015. For compatibility, An-
droid 6.0 and later versions (referred as Android 6.0+) still
support apps using SDKs prior to 6.0 (referred as low-version
apps). Low-version apps can directly obtain all their requested
permissions after installation. Our study shows that 38.3%
of our 180 surveyed Android 6.0+ users mistakenly expect
low-version apps to request permission at runtime (cf. §4).

While many previous works focused on user comprehen-
sion of the install-time permission notices [37,39,43], it is still
unclear how well users can understand the permissions in the
runtime model. In this paper, we aim to identify the problems
in the runtime permission model and evaluate their impacts
on users by answering the following research questions:
RQ1. (Risks induced by permission model compatibility)
How commonly do users have low-version apps installed,
which may take advantage of permission model compatibility

to bypass runtime user consents?
RQ2. (Runtime permission comprehension and manage-
ment) Can the information provided by the system help or-
dinary users to precisely comprehend the permissions and
their capabilities? How often do users review their permission
settings after they granted them at apps’ runtime?
RQ3. (Extra information from the system) What extra in-
formation (if the system can provide) would impact users’
permission decisions?

To answer the research questions, we conducted three differ-
ent types of studies. We first collected app permission settings
from 4,636 real mobile users to study the real-world adoption
of the runtime permission model. We then conducted both the
interview study (n=20) and two online surveys (n= 359 and
n=1200) to study users’ comprehension and experience with
permissions. We also identified factors that are of users’ con-
cern in making permission decisions in our interview study
and used online surveys to investigate their impact on users’
decisions.

Our study reveals three interesting findings: (1) Low-
version apps are still widely used three years after the run-
time permission model was introduced. Among the 4,636
studied Android users, 61.8% have at least one such app in-
stalled on their devices (§4); (2) Only 6.1% of survey re-
spondents can accurately infer the scope of all the permission
groups after they read permission explanations from the smart-
phone OSes (§5); (3) Messages capturing negative aspects
of the apps are more likely to impact users’ permission deci-
sions (§6).

This paper makes the following three major contributions:
• We study users’ understanding of the information provided

by smartphone systems for the runtime permission model.
We identify common misunderstandings raised by the per-
mission model change, the design of permission groups and
app-provided explanations.

• We identify five factors that users are concerned about in
making permission decisions and quantitatively compared
their impact on users’ permission decisions from both posi-
tive and negative perspectives.

• Based on our study findings, we provide recommendations
to the designers of smartphone OSes to address common
misunderstandings of the runtime permission model.

2 Background
2.1 Permissions & Permission Groups

Permissions are introduced to gain explicit consent from
smartphone users to access sensitive data or system resources.
Smartphone OSes organize permissions as permission groups
and let users decide whether to allow or deny each permis-
sion group [15]. For example, in Android, the READ_SMS and
RECEIVE_SMS permissions are included in the SMS group as a
whole. When either READ_SMS or RECEIVE_SMS is requested,
Android will ask users for SMS group with the same notice.

752 30th USENIX Security Symposium USENIX Association

Users have two ways to manage permissions in the runtime
permission model. First, users can make permission decisions
in dialogs when they are using an app, as shown in Figure 1(a).
However, these system dialogs are not informative due to: 1)
they display the same message when any permission in a per-
mission group is requested (e.g. in Figure 1(a), the message
could be displayed when the app requests to access phone
ID or make phone calls); 2) they only give brief permission
explanations, which is not intuitively understandable (e.g. in
Figure 1(a), “make and manage phone calls” also includes
accessing phone status and ID). Second, users can grant or
revoke an app’s permissions in privacy settings afterwards.
However, the system settings provide neither detailed expla-
nations nor clear definitions of permission groups, as shown
in Figure 2. Users may need to guess the relevant resources
allowed by each permission group from the group name.

2.2 Permission Management
On Android. Since version 6.0 which was released in

2015, Android has changed its permission model from install-
time to runtime permission model for four years at the time
of study in 2019. In the install-time model, a list of requested
permissions and their descriptions are shown before the in-
stallation of an app, as shown in Figure 3. Users can either
(1) grant all the requested permissions to the app or (2) reject
and terminate the app installation. In the runtime permission
model, permission request dialogs are shown to requested
permissions when users start using the app, so that users can
make decisions at the granularity of the permission group.

Compatibility becomes a problem for phones which sup-
port runtime permission model. Android developers need to
set a target SDK version in the configuration file to specify the
Android version that the developers have tested against. Apps
with a lower version of SDK cannot accommodate to runtime
permission model: all requested permissions are granted at
installation time even when running on newer versions of
Android. If users are unaware of this issue, they may expect
that all apps will request permissions at runtime and uninten-
tionally grant all permissions at install time.
On iOS. iOS has been using the runtime permission model
since iOS 6 in 2012 [12]. It has two key differences compared
to Android. First, iOS has a finer-grained permission model
for some sensitive information. For example, iOS users can
independently manage permissions for specific categories of
personal data like step count or heart rate within the Health
permission group, as well as control read and write permission
for each category. We took the different permission groups
into account when we design the study for iOS and Android.

Another key difference is that iOS requires app developers
to specify a usage explanation for each of the requested sensi-
tive resources as shown in Figure 1(b), which is optional and
recommended on Android [16]. However, developers may
provide partial or misleading explanations that avoid users
denying their apps’ permission requests [50, 57].

3 Methodology
3.1 Permission System Evolution Study

To study potential issues of permission model change, we
designed and implemented an Android app to collect apps
installed on users’ phones and their permission settings from
real users. We then used the collected data to analyze the
evolution of apps’ target versions on the Android market
and users’ permission decisions for various apps. We did
not gather data from iOS due to: (1) iOS does not allow a
third-party app to get other apps’ permission granting status.
(2) Users are not able to install apps with the install-time
permission model since iOS 6 in 2012.

Compared to simply crawling apps and relevant data
from app markets, the real permission settings enable us to
know (1) users’ actual permission settings (allow or deny) for
the apps and (2) the impact of low target SDK version apps,
such as the percentage of users who have installed such apps.
Data Collection Methodology. We designed an Android
app, Permission Checker (PerChecker), to help users see the
list of detailed permissions of each app under permission
groups [9, 34]. The app was released on Google Play in June
2018 and has received over 10k downloads by June 2019.
For each user, we leveraged PerChecker to collect the list of
installed apps, as well as each app’s requested and granted
permissions. We also collected the IP and MAC address as the
unique ID for analytical purposes. No personal demographics
data was collected from PerChecker users. Our data collection
process was from June 2018 to September 2018. To boost the
initial installs, we used Google Ads in August 2018 with key-
words "permission" to get the first 400 installs, then stopped
advertisements.

To keep the data collection process transparent to users,
we provided a clear summary of privacy policy [8] clarifying
what data will be collected and how the data will be used,
which will be shown on the app’s first launch. Users can also
opt out of the data collection at any time. In total, we collected
4,636 permission settings from distinct Android users whose
phones support the runtime permission model. The dataset is
available at [7].

3.2 Interview Study
We conducted semi-structured interviews to study users’

comprehension of permission groups and related risks, as
well as factors that affect users’ permission decisions. The
participants must have smartphones of the runtime permission
model. The interview results are used to design surveys in
§3.3. Before the interview, we refined the questions through a
pilot study with people from various knowledge backgrounds
and verified the questions’ intelligibility. The full interview
questions are available online [10].

Interview Design Methodology. Our semi-structured in-
terviews are guided with predefined questions. We also en-
couraged the participants to talk about their understandings

USENIX Association 30th USENIX Security Symposium 753

of any related topics. Here are the main interview phases (for
full phases and questions, please refer to [10]).

(1) Permission group comprehension. We asked if they can
find apps’ permission settings on a smartphone. If users failed
to find the permission settings, we would help them find the
settings. Then we presented the participants with a list of
permission groups in settings as shown in Figure 2 (We also
use the centralized settings display for iOS). Then we ran-
domly picked 4-5 permission groups and asked participants
to explain what resources each permission group controls. We
further asked how often the participants used the permission
settings and whether they would check them regularly.

(2) Permission model changes. (Android only) We showed
the participants the prompt when downloading the “Camera
FV-5 Lite” (an app with low target SDK version) with the
provided phone, and asked if the permissions will be granted
immediately after click “Accept” and whether there will be
permission dialogs after they start using the apps, and reasons.

(3) Permission rationale. (iOS only) We showed the screen-
shot of Camera permission request for “Prisma” (an app to
stylize photos, see Figure 7) on iPhone, and asked whether
the rationale in the dialog is from the systems or the app de-
velopers. We also asked for reasons and whether they find this
message helpful.

(4) Concerns in granting permissions We asked if they
have met uncomfortable permission requests and also asked
for specific details such as the permission and app’s name. We
further asked why they found the permission requests uncom-
fortable or their concerns when they were making permission
decisions. Then we asked what factors they would consider
in making permission decisions and required them to provide
some examples to improve the reliability of results.

Recruitment. We spread the advertisement on the bulletin
board in public places like malls and parks. We advertised
our study as “Behavior observation with smartphones” study
without mentioning privacy or security to reduce the recruit-
ment bias for people who are in favor of privacy or security
questions. Before the interview process, we first confirmed
the participant is qualified for the interview: the participants
must own an iOS device or an Android device with version
6.0 or higher. 20 participants satisfied the interview require-
ments and fully completed the interview. The demographics
are reported in §3.4. Our interview was conducted in a cof-
fee shop (a casual environment) and was recorded for future
notes-taking. Each interview took 10–30 minutes (avg. 14.3
mins). Each participant was compensated with a $5 gift card.

Data Analysis Procedure. We gathered the text by tran-
scriptions, and then we performed an analysis on the data with
three steps. First, we read through the data and divided the
data into sections based on the interview questions. Second,
one researcher reviewed the text to obtain the initial code-
book from each of the sections. Different coding methods are
used for data from different interview phases. For the first
three phases, deductive coding was used because the codes

are mostly expected. We added new codes if we found any
and reorganized the codebook as we code on. For the last
phase (i.e., concerns in granting permissions), inductive cod-
ing was used for the initial codes, which follows the coding
practices for exploratory data in social science studies [31].
The codebooks are gradually refined through multiple read-
ings and interpretations. We identified five subthemes under
the decision factor theme based on the codes. Third, we have
two other researchers independently review the data to assess
the coding reliability. Two researchers met and discussed the
cases where their codes differed, and converged on all final
codes. The coding reliability is measured with the Krippen-
dorff’s α statistic [42] and the result is shown in Table 10,
indicative of largely consistent coding. The codebook with de-
scription and examples are presented in Table 10 and Table 11.

3.3 Internet Survey
3.3.1 Survey Structure

We conducted two separate surveys to study users’ compre-
hension of the permissions (Permission Comprehension) and
the factors of their concern when making privacy decisions
(Decision Factors), respectively (see [10] for survey instru-
ments). Both surveys contain a background section including
demographics questions to screen and filter the responses.

Survey 1: Permission Comprehension.
Permission Group Comprehension. In the runtime permis-

sion model, permissions are managed in permission groups.
This survey aims to investigate if users can understand the
scope of each permission group (i.e., their protected resources
and permitted actions) based on the systems’ descriptions.

To achieve this, in each question of this section, we first
presented a permission request dialog (Figure 1) to our re-
spondents and then asked them to choose what actions can
be performed by the app once the permission is granted. We
provided our respondents with the shuffled correct choices de-
scribing relevant actions controlled by the permission group
and two more incorrect choices describing irrelevant actions.
We also provided choices, “None of these” and “I don’t know”
in case our respondents find no choices applicable in their
understanding or they were not sure about the answer. Our
questions in this section covered all the permission groups
shown in Table 1. To avoid overwhelming the respondents
with too many questions, only four questions for different
permission groups are randomly drawn for each respondent.

Permission Model Changes (Android Only). As discussed
in §2.2, the evolution of the permission model on Android
makes it possible for apps to get the permissions granted
from users unintentionally. In this section, we investigated
whether our Android respondents were aware of such permis-
sion model changes and their induced risks. The permission
notice for low-version apps in the app market is shown before
downloading apps, as shown in Figure 3. We then asked our
respondents three questions: (1) Will the app be able to access

754 30th USENIX Security Symposium USENIX Association

Table 1: Table of permissions that require user consent in runtime
on the recent version of Android and iOS. Y means the app needs
prompt users to get this permission; X means the app has no way
to get this resource on this platform; - means the app does not need
to prompt users for this permission or does not need to have such
permission. We study all permissions marked with Y in this paper.

Permission(s) Android 9.0 iOS 12
Calendar, Camera, Contacts, Microphone Y Y

Location Y Y1

Body Sensor Y Y1

Storage Y X
Photos Y1 Y

SMS, Call Log, Phone Y X
Bluetooth Sharing - Y

Music & Media, Health -1 Y

Figure 2: Android settings for
app permission groups. Users
need to infer the scope of the
group to manage permissions.

Figure 3: Google Play’s notice
for apps with low target SDK
version before installation. It
gives no clear warning to users.

the listed resources immediately after clicking accept? (2)
Can you change the permission settings again? (3) Will the
app ask for the permissions again after launching the app?

Survey 2: Decision Factors. This survey focuses on fac-
tors that can influence users’ decisions on permission requests
(decision factors for short). Specifically, we studied six deci-
sion factors: reviews, rating, brand reputation, background
access, data transmission and grant rate. The detailed defini-
tions of each decision factor is presented in §6.1. Our study
compares how users’ permission decisions are impacted by
positive and negative messages of each decision factor. Our
study also surveys users’ opinions on how helpful they find
different factors in making permission decisions.

1Location permission decisions on iOS are divided into 1) always allow,
2) allow only while using this app, 3) deny; Body sensor permission on iOS
is called Motion; Photos on Android is regarded as common external storage,
so it belongs to Storage permission; Music & media library are specific to
Apple services.

In our survey, each respondent is provided with three simu-
lated scenarios of permission request for three different per-
mission groups (Contact, Calendar, and Location). These
permission groups are selected as they are available on both
Andriod and iOS.The scenarios are as follows:
(1) Felp requests Contact permission. Felp can help you find
good restaurants around you. In Felp, you can read the menu
and other users’ reviews for restaurants.
(2) RShare requests Calendar permission. RShare can help
you find a ride and carpools. You can search for your destina-
tions and find suitable rides in RShare.
(3) LCGE requests Location permission. LC Gas & En-
ergy (LCGE) is an app to help you pay your electronic bills
and utility fees. You can view your current energy usage and
fees, make payments or schedule a payment.

We used these descriptions to introduce app functionalities
to our respondents. In order to provide more runtime context,
we also provided screenshots of the apps before and after the
permission requests, with the triggering actions, as shown in
Figure 4. The images are adapted from screenshots of real
apps to simulate request context and help users understand
the scenarios. We decided to use action-triggered permission
requests to represent the runtime context, because most apps
will request the three permissions interactively via clicks [51].

The respondents need to decide to allow or deny the re-
quests for two times: (1) the first time is as implemented in
the current smartphone systems without any additional mes-
sages and (2) the second time is with additional messages
regarding one of our six decision factors under study. We aim
to investigate whether the respondents can make different per-
mission decisions with and without these additional messages.
We provided each respondent with either positive or negative
messages regarding only one factor to avoid the influences of
different factors on their perception.

The messages for each factor are shown in Table 2. We
chose the messages for each factor based on the interview
study results and refined based on our pilot study. We framed
the messages both from positive and negative side based on
the characteristics of each decision factor. For the factors pre-
sented with specific values (i.e., rating, review and grant rate),
we chose the values at extreme in order to clearly present the
positive or negative side of the factors. For brand reputation,
to have a unified standard to present the app’s reputation in
protecting users’ privacy (c.f. §6.1), we used whether the app
has been certified by two recognized standards (GDPR [3]
and ISO/IEC 27001 [5]). To help users understand these two
standards, we provided brief information about these certifi-
cations and standards in the question text.

After answering the three simulated scenario questions,
respondents can better understand the studied factors. We then
asked the respondents to rate the helpfulness of the decision
factor in a five-point Likert scale. The full questionnaire with
all scenarios, factors and their related messages are in [10].

Permission comprehension. In order to study the correlation

USENIX Association 30th USENIX Security Symposium 755

Table 2: Factors and their messages displayed in the permission
dialogs. App is the simulated app name and Resource is the permis-
sion group name that an app requests. The text in the brackets will
be displayed for positive messages.

Factors Messages
Background access Resource will [not] be accessed when you’re

not using the app.
Data Resource will [not] be transmitted and [or] stored

transmission by App.
Rating The rating of App is 2.1 [4.8] rating in app store.

Review1 App has 13 [no] reviews related to Resource
in app store.

Grant rate 10% [90%] of App users granted Resource access.
Brand reputation2 App has [not] been GDPR certified and [or]

ISO/IEC 27001 certified.

Figure 4: The UI transition figure3 for simulated scenario
RShare in survey 2. The respondent was first shown figures
without the message in the prompt dialog. The positive and
negative messages for all factors are in Table 2.

between users’ comprehension and their permission decisions,
we included the permission group comprehension questions
as described in survey 1, for permission groups used in the
scenarios (i.e., Contact, Calendar, and Location).

Background Section. Both surveys contain a background
section, including the OS version information and demo-
graphic questions. (1) OS Version. We required our respon-
dents to provide their OS versions, because the correct an-
swers to the questions in Permission Group Comprehension

1For the negative framing for review factor, we display example negative
reviews in the question descriptions. One example is “Why App needs my
Resource? Intrusive and unnecessary permission invasion of privacy!”.

2Since users may not be familiar with GDPR and ISO/IEC 27001, we
include the short descriptions in the question text. GDPR certification means
the company is transparent and honest in collecting and protecting users’
personal data. Appropriate technical and organizational measures have been
taken to achieve data protection; ISO/IEC 27001 certification means that
the company has defined and put in place best-practice information security
processes to prevent security risks such as hacks, data leaks or theft.

3Some icons are from Freepik.

(a) Gender

(b) Age

(c) Education level

Figure 5: Key demographics for interview study (n=20), Survey 1
(n=359) and Survey 2 (n=1200).

may vary for different OS versions. Besides, respondents
whose Android phone’ OS versions are below Android 6.0
will exit the survey immediately. (2) Demographics. We col-
lect demographic data of respondents including their gender,
age, education level, experience in computer science or related
fields, privacy knowledge level and occupation.

3.3.2 Recruitment
We conducted our surveys on Amazon Mechanical Turk

(AMT) from April 2019 to May 2020. We required that AMT
workers must be at least 18 years old, have a 98%+ approval
rate in their task history. To avoid bias in recruitment, we
avoided using terms related to security and privacy in the
AMT task description. We required respondents to have a
smartphone when answering questions.

We received 359 valid responses for survey 1 (180 for
Android and 179 for iOS) and 1200 valid responses for survey
2 (600 for Android and iOS each). The average time spent
on survey 1 and survey 2 are 6.78 and 7.81 minutes. Each
respondent was compensated $1 for completing the survey.4

3.4 Demographics
The key demographics for interview study (n=20), survey 1

(n=359) and survey 2 (n=1200) are shown in Figure 5. In the
interview, survey 1 and survey 2, 16 (80%), 279 (77.7%) and
843 (58.0%) of respondents reported no experience (education
or job) in computer science, IT, or related field respectively.

3.5 Ethical Considerations
Our PerChecker study was conducted under a collaboration

between a company and a university. The PerChecker app
was developed and released by researchers from the company.
We took various measures to ensure that users’ privacy is re-
spected. First, the researchers were trained with ethics for user
research before the study. Second, before collecting any data,

4We increased the compensation rate for survey 1 from $0.5 to $1 after
we found that the time spent on survey 1 was longer than that from expected.
The compensation change was approved by IRB.

756 30th USENIX Security Symposium USENIX Association

PerChecker explicitly requests for users’ approval for data
collection and usages. Only after users approve the request,
PerChecker starts collecting data. Third, during the usage
of PerChecker, users can choose to delete all data collected
before and disallow future data collection. Fourth, all data
transmissions to our server are encrypted via AES256. Fifth,
no personal identifiable information (PII) is saved in the study.
To differentiate data from different devices, we save the hash
value of MAC and IP addresses but do not save the original
addresses. The researchers at the university conducted the
analysis based on the collected data. The university’s Institu-
tional Review Board (IRB) was contacted and concluded that
the study did not require IRB review.

The interview and Internet survey study was conducted in a
university. Before the study, we contacted the university’s IRB
and received an exempt for IRB review. Both studies record
no personal identifiable information and thus are anonymized.

3.6 Threats to Validity
Like other user studies, our study also has a risk that the

findings may be biased to the studied users and not repre-
sentative enough of the entire population. In this paper, we
use multiple data sources to cross-validate our findings. Our
data sources include (1) real users’ permission settings from
PerChecker (n=4636), (2) user study with both interviewees
(n=20) and online AMT workers (n=1559), each covering a
large number of real mobile users. We discuss the potential
limitations of each data sources below:

PerChecker. The demographics for PerChecker users were
not obtained. PerChecker is listed in the "Security Apps" cate-
gory in Google Play. Users find our app either by searching or
recommendations. These users can be more security-sensitive
since they use security tools, or less tech-savvy because they
turn to tools for help to deal with permissions. Therefore,
we urge the readers to take the potentially unbalanced demo-
graphics in mind when interpreting the PerChecker’s statistics.

User study. A general limitation of user study is that re-
sults are self-reported and the behavior and perceptions from
participants may differ from real-life conditions [46]. The
participants may answer questions based on what they desire
to do, not what they actually did [45], even though the previ-
ous study also shows that the findings are still correlated with
real-life experiences strongly [55]. We took several measures
to mitigate the limitations: in the open-ended questions, we
reminded participants that there were no standard answers
and they were encouraged to discuss based on their past ex-
periences. We also mimicked the real screen interface and
described triggering actions to provide runtime context in
simulated scenarios in survey 1 and 2 [10].

4 Permission Model Change
Android starts to support requesting permission at runtime

since Android 6.0. For compatibility, the new version systems
still support early-developed apps adopting the install-time

permission model (i.e., targeting versions before Android
6.0, low-version apps for short). All permissions requested
by such low-version apps will be granted immediately af-
ter installation without asking for users’ consent at runtime,
even on new version systems. We investigate the significance
of the problem by analyzing (1) the prevalence of installed
low-version apps among real Android users and (2) users’
comprehension of the system’s notice for low-version apps on
new Android versions with runtime permission capabilities.
Finding 1: Three years after the introduction of the run-
time permission model, low-version apps are still prevalent.
Among the 4,636 real Android users in our study, a large
percentage (61.8%) have at least one such app installed.

More than half (61.8%) of PerChecker users have at least
one low-version app installed (95%CI [60.4%,63.2%]). One-
in-fifteen (6.7%) of PerChecker users have five or more low-
version apps installed (95%CI [6.1%,7.3%]). Some examples
of these low-version apps are shown in Table 4. We further
analyzed the top 40 most-used low-version apps, and made
the following observations.

The majority of these most-used low-version apps avail-
able on market are still actively updated without adding sup-
port for the runtime permission model. 70% of our analyzed
low-version apps are still actively updated within 3 months
when we conducted the study (September 2018). Only a small
percentage (5%) are actually “legacy” apps that did not pro-
vide updates for more than two years. The breakdown in
Table 3 shows that the app developers, even when the sys-
tems provide an option to better protect users’ security and
privacy, may not choose to update. The developers may either
(1) lack the motivation or incentive to update the app with a
secure higher API version, or (2) intentionally take advantage
of the design flaws to collect users’ sensitive data without
users’ attention. The second reason may become more pos-
sible when the app still keeps updating after the permission
model change.

Table 3: Last update time on Google Play of top 40 common low-
version apps in PerChecker users as of September 2018.

Last update 3 months 6 months 12 months 24 months
(%) 28 (70%) 34 (85%) 37 (92.5%) 38 (95%)

Table 4: Top 5 commonly-used low-version apps among PerChecker
app users. The app’s metadata information is retrieved from Google
Play on Sep. 20, 2018.

App Name Category # install Update date
TextNow Communication 10M+ 19/09/18
ES File Explorer Productivity 100M+ 17/09/18
Settings DB Editor Tools 100K+ 01/09/18
WiFiman Tools 100K+ 30/08/18
Advanced Tools Tools 100K+ 27/07/18

Low-version apps have large user bases. Table 5 lists the
number of downloads of each low-version app on Google
Play. Note that we only analyzed the downloads from the

USENIX Association 30th USENIX Security Symposium 757

Table 5: Download times on Google Play of top 40 commonly-used
low-version apps among PerChecker users.

Downloads 100M+ 10M+ 1M+ 100K+
(%) 5 (12.5%) 18 (45%) 25 (62.5%) 39 (97.5%)

biggest app market, Google Play. The actual number of total
downloads for the low-version apps can be even larger if some
third-party markets are included. If low-version apps exhibit
malicious behavior by abusing some of the permissions, a
large number of users can be potentially affected, since all the
permissions are granted immediately after installation.
Finding 2: More than one-third (38.3%) of users are not
aware of the behavioral differences in requesting permis-
sions between low-version apps and apps supporting the
runtime permission model.

In dealing with the low-version apps, Google Play only
notifies users of the permissions requested by the app before
its installation with a dialog (Figure 3). In the interviews, we
showed the participants an example dialog when installing
the app “Camera FV-5 Lite” from Google Play and explored
if they could infer the different behaviors of low-version apps.
Seven out of the ten Android participants mistakenly believed
that the app would prompt permission requests again after
installation - just like apps with higher target SDK versions,
which shows that some users misunderstand that permissions
will be not granted upon installation for the low-version apps.

In survey 1, we validated this observation in a larger pop-
ulation. More than one-third (38.3%) Android respondents
mistakenly believed that the app would ask again for the per-
missions. This means that many users cannot infer the differ-
ence between low-version apps and other apps supporting run-
time permission from Google Play’s notification dialog. For
permission management for low-version apps, the majority of
respondents (80.0%) correctly knew that they could revoke
granted permissions. However, among all PerChecker users
with low-version apps installed, only one of them actually
revoked permissions for a low-version app, which suggests
the ability to revoke permissions for low-version apps have
not been well utilized by the users in real-world scenarios.
Discussion on recent app market policy change. While we
were conducting our study, Google Play began to limit the
target version of newly uploaded apps [11]: staring from Nov.
2019, new apps and app updates need to target Android 9 or
above. This both confirmed and mitigated the issue of low-
version apps. But the issue has not been completely eliminated
even with this limit. First, the policy only applies to the newly
uploaded apps; for a large number of existing apps, they still
use low-version SDK. Second, low-version apps can still exist
on manufacturer app stores (e.g. Google Play) and third-party
app stores (e.g. F-Droid) [6].

For low-version apps, Android asks users to decide to re-
voke dangerous permissions or not when the app launches
for the first time since Android 10 [22]. However, this can-

not completely eliminate the issue. First, making decisions
before using the app still lacks the runtime context even in
the runtime permission model. Second, the adoption of An-
droid 10 may take a long time due to the problem of Android
fragmentation [1]. These users may still be impacted by apps
with low-version SDK if their OSes are not updated.
Answer to RQ1: Low-version apps are still prevalent three
years after the introduction of the runtime permission model.
Besides, many users mistakenly believe that the low-version
apps still need to request permissions at runtime.

5 Runtime Permission Comprehension
In this section, we investigate (1) whether users can pre-

cisely infer the scope of permission groups from the system-
provided messages in permission dialogs, and (2) how often
users review their permission settings and whether reviewing
permission settings can help them. As for iOS, the permission
request dialogs mix system-defined permission descriptions
with explanations provided by apps. We also investigated how
iOS users perceive app-provided descriptions in the dialogs.

5.1 Permission Groups Comprehension
In our survey 1 on permission comprehension, respondents

need to answer four questions related to the scope of per-
mission groups as described in §3.3. The details of survey 1
results are shown in Table 6.
Finding 3: Only a small percentage (6.1%) of survey re-
spondents can correctly infer the accurate scope of permis-
sion groups from messages in the system dialogs. Users can
both (1) mistakenly include choices seemingly correlated to
a permission group, and (2) exclude correct choices which
are hard to infer from the system descriptions.

Around one-in-twenty (6.1%) respondents can select all
correct usages of the permission groups in the comprehension
test. Other respondents can be divided into two categories.
One category of users (34.4% for Android and 21.2% for
iOS) can respond correctly but underestimate the scope of
permission groups when there are multiple correct choices,
as shown in Table 7. The other category (more than 60% for
both Android and iOS) overestimates the scope and includes
wrong choices in their answers.

We further analyzed the most common wrong choices that
are made by more than 20% of respondents in the comprehen-
sion questions. One observation is that the descriptions and
names of the permission groups mislead users and cause them
to select seemingly-correlated wrong choices. For example,
around one-in-three (37.3%) of users believe after granting
the Camera permission, apps can also read the pictures and
videos, which is controlled by permission group Storage on
Android or Photos on iOS. On Android, two-in-five (38.5%)
of respondents think that apps can read contacts with the Call
Log permission group, which is controlled by another permis-
sion group [21]. These misunderstood permission groups are
designed to serve relevant functionalities, but the explanations

758 30th USENIX Security Symposium USENIX Association

Table 6: Permission group comprehension results. 3and 7mark correct and incorrect responses respectively. - means the option
is not provided for the OS platform. The options were shuffled and only four questions were randomly drawn for one respondent.
“None of these”, “I don’t know” and other wrong options were omitted if the numbers are less than 5 (7%) for both platforms.
The Music and Media, and Bluetooth permission groups on iOS are also omitted here. Full results available at [10].

Permission Group Options Android iOS
Calendar 3Save events to your calendar 44 62.9% 63 84.0%
Android: Allow [App]to access your calendar 3Read your calendar 61 87.1% 69 92.0%
iOS: [App] would like to access your calendar 7 Make phone calls 9 12.9% 0 0%
Contact 3Read your contacts 65 90.3% 62 88.6%
Android: Allow [App] to access your 3Save new contact to your phone 24 33.3% 29 41.4%
contacts? 3Read your Google account email address 17 23.6% -
iOS: [App] would like to access your 7 Read your location 6 8.3% 8 11.4%
contacts. 7 Make phone calls 9 12.5% 6 8.3%
Camera 3Take pictures and record videos 62 88.6% 65 90.3%
Android: Allow [App] to take pictures and 7 Read pictures and videos 29 41.4% 24 33.3%
record videos? 7 Read your contact 3 4.3% 9 12.5%
iOS: [App] would like to access the camera. 7 Read your location 8 11.4% 6 8.3%
Microphone 3Record your voice 55 88.7% 72 91.1%
Android: Allow [App] to record audio? 3Record your voice when the app is in the

background (b.g. for short)
39 62.9% 42 53.2%

iOS:[App] would like to access the mic. 7 Make a phone call - 16 20.2%
Location 3Read your location 74 90.0% -
Android: Allow [App] to access this device’s 3Read your location when you’re using the app - 53 82.3%
location ? 3Read your location when the app is in the b.g. - 53 82.3%
iOS: [App] would like to access your 7 Make phone calls 11 13.4% 6 9.4%
location. (Always allow is chosen) 7 Read your photos 8 9.8% 7 10.9%
Body Sensor 3Read your steps count 46 63.0% 48 78.7%
Android: Allow [App] to access sensor data 3Read your heart rate history 53 72.6% -
about your vital signs? 7 Read your fingerprints 22 30.1% -
iOS: [App] would like to access your motion 7 Read your face ID 11 15.1% -
& fitness activity. 3Read the info. from sensors on your phone - 45 73.8%

3Read your running history - 45 73.4%
I don’t know 12 16.4% 4 6.6%

Phone (Android only) 3Get your phone number 32 47.0%

-

Msg: Allow [App] to make and manage 3Get your phone unique ID (e.g. IMEI) 16 23.5%
phone calls? 3Make phone call 54 79.4%

3Answer phone call 45 66.2%
3Know whether the phone is making phone calls 42 61.8%
♦ Read call history 36 52.9%
7 Read your location 9 13.2%

Storage (Android only) 3Read this app’s photos, media, and files 52 78.8%

-
Msg: Allow [App] to access photos, media, 3Read other app’s photos, media, and files 33 54.5%
and files on your device? 3Save new photos, media, and files 36 50.0%
SMS (Android only) 3Read your SMS messages 59 79.7%

-Msg: Allow [App] to send and view SMS 3Send SMS messages 64 84.6%
messages? 7 Read your location 11 14.9%

7 Make phone calls 7 9.5%
Call Log (Android only) 3Read your call history 74 89.1%

-Msg: Allow [App] to access your phone 3Save new call record 31 37.3%
call logs? 7 Read your contacts 32 38.5%

7 Get your phone number 25 30.1%
Photo (iOS only) 3Read all photos on the device

-

66 94.3%
Msg: [App] would like to access your ♦ Delete photos on the device 13 18.6%
photos. 7 Read all files on the device 7 10.0%
Health (iOS only) 3Read your steps count

-

48 70.6%
Msg: [App] would like to access and update 3Store your steps count 55 80.9%
your health data in Steps. (A separate page 7 Read your heart rate 33 48.5%
with requested health data will be shown) 7 Read your workouts history 31 45.6%

♦ Read call history moved to a new Call Log group since Android 9.0 [21]; Delete photos on the device will need extra confirmation.

USENIX Association 30th USENIX Security Symposium 759

Table 7: Respondent categories breakdown based on the compre-
hension question results. (Android n = 180, iOS n = 179). Based
on the respondents’ answers, we classified respondents into four
categories: All Correct if all answers of the respondent are correct;
Partially Correct means at least one of the respondent’s answers
is partially correct and no answers are wrong; All Wrong if all the
respondent’s answers are wrong; Wrong otherwise.

Category Android iOS
All Correct 7 (3.9%) 15 (8.4%)
Partially Correct 62 (34.4%) 38 (21.2%)
Wrong 96 (53.3%) 119 (66.5%)
All Wrong 15 (8.3%) 7 (3.9%)

Table 8: Permission group granularity and corresponding correct
response rates on Android. The correct response rate tend to be
higher for permission groups with smaller number of permissions.

of permissions Permission group Correct response (%)
1 Camera 55.7%

Location 80.5%
Call Logs 8.3%
Sensor 31.5%

2 Calendar 48.6%
Microphone 51.6%
SMS 64.9%

3 Contact 8.3%
Storage 16.7%

5+ Phone 10.3%

are not clear enough to help users understand and differentiate
the actual capabilities of permission groups.

Another characteristic of wrong choices is that they are
related to some critical resources that are hard to infer simply
from the system descriptions. The system permission dialogs
provide the most direct notices to users when users make per-
mission decisions, but they only provide partial information
on what is given away after granting permission. Take Phone
permission group as an example, it protects phone-related
features such as making phone calls and accessing unique IDs
of the phone (e.g., IMEI number), but the system message is
only “make and manage phone calls”. In the survey results,
around three quarters (76.5%) of our respondents do not know
that the app can access IMEI after granting the permission,
which can be used to track the app users (Table 6).

In the Location question for iOS users, the permission
dialog contains a button, “Allow only while in use”, which
was introduced in iOS 11 in 2017. With this information, the
majority (83%) of iOS respondents correctly understood that
their location may be accessed when the app is running in the
background if they selected “Always allow”. This is different
from the previous finding that only as few as 17% of the users
knew that the background applications may have the same
capability as the foreground applications in 2013 when the
dialog does not contain such information [58]. This suggests
that through proper notices from systems, users can better
comprehend the capability of the permissions.

(a) Android permission comprehension results

(b) iOS permission comprehension results

Figure 6: Answer category breakdown for permission comprehen-
sion questions on Android and iOS. Permissions groups above the
dotted line are shared by Android and iOS even though minor differ-
ences as shown in Table 1. The others are unique to the platforms.
Rows are sorted based on the percentage of Correct answers. Correct
means that all of the correct choice(s) for the question are selected;
Partially correct means that not all correct choices are selected and
no wrong choices are selected; At least one incorrect means that one
or more wrong choices are selected.

Finding 4: Users are more likely to misunderstand
“coarser-grained” permission groups that control more per-
missions, sensitive resources, or their associated actions.

Figure 6 shows the distribution of different answer cate-
gories (All correct, Partially correct and At least one incor-
rect) for each permission group. Different permission groups
have different percentage of correct answers. The percentage
of All correct answers for Contact, Phone, and Call Log
permission groups on Android are lower than 10%. On the
contrary, most (80.5%) answers for Location are correct.

To understand why users have poor understandings of cer-
tain permission groups, we investigated the relationship be-
tween the granularity of permission groups and common mis-
understandings on certain permissions. The granularity of
the permission group in the runtime model refers to the num-
ber of similar capabilities grouped by the system. Note that
only Android defined specific permissions under permission
groups, so we only study Android. We divided the permis-
sion groups according to the number of permissions in them.
Table 8 shows each permission group and the percentage of
completely correct answers. We find that the average correct
percentage has a negative correlation with the number of per-
missions within the group on Android (Pearson coefficient
r=-0.885, p=0.114; two-tailed). One outlier is the Call Log
permission group with 2 permissions but has a low correct
percentage. This group has many related functions related to
phone calls which may cause confusion without clear expla-
nations as described in Finding 3.

760 30th USENIX Security Symposium USENIX Association

Table 9: Respondents’ initial grant rate comparison based on the
comprehension question requests in survey 2. (n=600 for iOS and
Android). The initial grant rate is the percentage of respondents who
choose “Allow” before we show them with the messages of decision
factors. Correct refers to the percentage of respondents who allowed
the permission request and correctly comprehended the permission
in this scenario, while Incorrect means the percentage of respondents
who allowed the permission request but incorrectly comprehended
it. p value is calculated based on Mann-Whitney U Test.

Android iOS
Scenario Correct Incorrect p-value Correct Incorrect p-value
Felp 51.3 47.1 0.307 42.1 44.3 0.323
RShare 58.4 66.0 0.028* 56.2 66.4 0.005*
LCGE 73.7 82.7 0.007* 74.3 79.8 0.059

Finding 4.1: Users who accurately comprehend a permis-
sion group, tend to be more conservative in granting it.

To study the relationship between users’ comprehension
and their permission decisions, our survey 2 only asked re-
spondents to answer the corresponding permission compre-
hension questions after they made decisions in the simulated
scenarios (§3.3.1). We compared the initial permission grant
rates (i.e., the percentage of respondents who allowed the
permission request before seeing our provided information)
between respondents who correctly and incorrectly answered
the comprehension questions. We compared the results of the
three scenarios respectively and conducted Mann-Whitney U
Test to evaluate the significance of the differences.

As shown in Table 9, users are more likely to deny a per-
mission if they can accurately understand it. The initial grant
rates of respondents who correctly answer the comprehension
questions are higher in all our evaluated scenarios except for
Android users in the scenario of Felp. The differences are
evaluated as significant with Mann-Whitney U Test for half
of the compared groups. This suggests that when users know
exactly what data will be collected, they are more conserva-
tive towards granting a permission group. This may protect
them from unwanted data exposure or leakages since the data
cannot be accessed by the apps in the first place.

As for the Felp (Contact) scenario, the Android users who
correctly comprehend the scope of the Contact permission
group accounts for only 6% of all Android respondents. This
can cause variability in the results and thus may induce the
exceptional results where the grant rate is higher for users
who correctly answer the comprehension questions.

5.2 Permission Management
Finding 5: Users may notice unexpected permissions after
reviewing their permission settings yet few of them (two out
of 20) regularly review their permission settings.

In the runtime permission model, users can review and
change their permission settings in system settings after
the first-time permission decisions. In the interview study,

16 (80%) participants successfully found the permission man-
agement interfaces without any guidance from us. We further
asked how often they use the permission management and how
frequent they review their permission settings. Only two par-
ticipants mentioned they regularly reviewed their permission
settings like every month and would revoke the unnecessary
permissions found in the process. Eight participants indicated
that they would never review the permission settings. Others
just roughly mentioned that they may check the permission
settings but not regularly. However, after reviewing their per-
mission settings in our study, five participants quickly noticed
permissions unexpectedly granted to some apps. For example,
one participant said, “Why do Whatsapp have access to my
location? I don’t want anyone to access my location”.

This finding suggests that few users actively used permis-
sion management to revoke unwanted sensitive data access.
Previous works explored using personalized privacy nudges
to remind users to review settings [26, 48]. They found that
many users restricted their permissions after receiving nudges.
Recently, Android 10 uses a similar approach to actively re-
mind users if they choose to always allow location access [22].
Future work may look into how to actively engage users in
the privacy management without causing habituation [62].

5.3 Developer-Specified Permission Explana-
tions on iOS

Finding 6: More than half (54.7%) of users did not know
that the explanations in the iOS permission dialogs are
provided by app developers instead of the system.

Figure 7: Camera re-
quest on iOS Prisma app.

iOS requires app developers
to provide explanations for all re-
quested permissions, which will
be shown in the permission re-
quest dialogs prompted by the
system. In the interview, partici-
pants were shown the screen of
Camera permission request for
Prisma app on iOS (Figure 7).
The users generally found the explanations helpful in under-
standing the reasons for the request. However, five partici-
pants mistakenly believed that the explanations were provided
by the system. We asked the same question in survey 1 to
quantify the misunderstanding among iOS users. More than
half (54.7%) of iOS respondents believed that the explana-
tions were provided by the system but not by the app develop-
ers (47.5%), or chose “I don’t know” (7.2%). This indicates
that many iOS users confuse app-specified explanations with
system-provided information in the permission dialogs.

The interviewees’ responses show that several reasons
cause their wrong perceptions. First, some users did not be-
lieve that app developers have the incentive to help them make
permission decisions. Second, the appearance of explanations
are consistent across all apps on iOS (e.g. Figure 1(b) and
7). They thought app developers cannot achieve this. Funda-

USENIX Association 30th USENIX Security Symposium 761

mentally, this misunderstanding exists because iOS does not
explicitly warn the users that the explanations are provided
by app developers. Even worse the explanations are displayed
in system-provided dialogs without clarification.

This misunderstanding can cause severe problems since
users may easily believe the explanations are from trusted
and verified sources. Previous research has shown that the
developer-specified explanations may contain only partial or
inaccurate information on what data will be accessed [50]. To
avoid confusion, the iOS system may include the sources of
explanations when displaying them in dialogs.
Answer to RQ2: With the limited information provided by
system permission request dialogs, users commonly mis-
perceived the scope of permission groups, and had more
misperceptions for permission groups controlling a larger
number of permissions.

6 Decision Factors
To make permission decisions, users may have concerns

and consider more factors other than current information in
the permission dialogs. To understand users’ concerns and
identify the factors that can affect their permission decisions
(i.e., decision factors), we interviewed 20 mobile users. We
further conducted a quantitative study on 1,200 users to evalu-
ate how different decision factors may change users’ decisions.
The setup of both studies is detailed in Section 3.2 and 3.3.

6.1 Identifying Decision Factors
We define decision factors as factors that users may take

into account when making permission decisions. In our in-
terview study, we asked the users if they have any concerns
when they make permission decisions and what information
would help mitigate the concerns. Based on the free-form
answers, we concluded five factors in the coding process.
The codebooks are in Table 10 and Table 11. To make our
study more comprehensive, we also included another factor,
the grant rate of other users, which was studied by previous
work [25,47]. The messages for each decision factor in survey
2 are presented in Table 2 and discussed in §3.3.1.
Finding 7: Besides grant rate studied in previous work [25,
47], users also take other five factors, including background
access, data transmission, brand reputation, rating, and
review, into account for making permission decisions.

Both internal and external factors can affect permission
decisions: Internal factors (i.e. background access and data
transmission) illustrate when and how an app will access,
transmit or store sensitive data, which can be gathered by
systems through monitoring apps’ behavior. External factors
include brand reputation, rating, review and grant rate. These
factors illustrate users’ opinions on an app or its producer
company. Even though users may have different privacy needs
and preferences, previous users’ opinions can still provide
some insights on privacy usages for the new users. We discuss
each factor and the interview study result as follows.

Background access. This factor concerns whether an app
will access private data when it is running in the background.
It was concerned by nine out of 20 participants. In current
smartphone OSes, after users grant permission, apps can al-
ways access the corresponding data. Therefore, some users
were concerned whether an app would abuse the granted per-
missions to collect private data secretly. Three participants in
our study said that they are afraid of apps tracking their loca-
tions all the time. For example, P14 said “Sometimes when
I’m talking to others, my phone wakes up and Siri asks me do
I need help. Siri, I’m not talking to you. And these home apps,
like Alexa, there is some concern.” This also conforms with
previous findings that certain background resource accesses
are unexpected and uncomfortable for some users [61, 62].

Data transmission. This factor concerns whether apps
transmit the collected private data to remote servers. Once
the data are transmitted to remote servers, it is unknown how
the data will be used. The data can be stored, leaked, or even
sold to third parties [14, 24]. Eight participants said they are
concerned with this factor. For example, P13: “Like photo-
editing app, I expect that they need photo permission because
that’s what they do. But I am always concerned [that] they
collect my photos and do some other things.”

Brand reputation. This factor indicates whether an app’s
vendor has a good reputation for protecting users’ privacy.
In our interview study, eight participants mentioned that this
factor can impact their permission decisions. Some of them
are more willing to grant permissions when an app’s vendor
has a good reputation in protecting privacy (e.g. P15 “... They
(well-known apps) should be more secure. I know who they
are, what they do and stuff like this. It makes me easier to
give them [requested information]”). However, there is no
gold standard to evaluate companies’ reputation and users’
evaluation standards can also differ from each other. While
many participants mentioned that they are more likely to
trust big famous companies, a few (two) participants also
showed strong distrust in big tech companies. One participant
said that “I don’t trust Facebook at all, they already had
all the information and sold it”. To objectively evaluate a
company’s reputation, we leveraged the information whether
it was known to comply with laws and standards in protecting
users’ privacy in survey 2 (§3.3)

Ratings and Reviews. These two factors refer to ratings
and reviews of an app in app stores. They reflect other users’
evaluations of an app’s quality. In our study, 15 participants
said that they usually look at an app’s rating to decide whether
to download it or not. Similarly, rating can also be provided to
assist users’ permission decisions. As P16 puts “The system
can provide something to help users differentiate good apps or
bad apps, [that] is helpful, like ratings”, ratings can help users
assess app qualities and may affect permission decisions.

Reviews may contain more detailed descriptions than rat-
ings but only a small proportion of reviews are useful for
permission [53, 59]. We analyzed the top 1,000 helpful re-

762 30th USENIX Security Symposium USENIX Association

Table 10: Summary of the interview codebook
Variable Description Levels α [42]
Decision factors What users concern about and what can mitigate their concerns in granting permissions See Table 11 0.877
Permission management familiarity Whether the participants can find the phone setting Yes/No 1
App store attention. Relevant information that users read in the app store before users download the apps Reviews/Ratings/Images/Descriptions 0.942
Permission check frequency How often the participants check their permissions Regular/Sometimes/Never 1
Permission model change (Android) Whether users know about how permission granted Yes/No 1

for low-version apps in the runtime permission model.
Permission explanation provider (iOS) Provider of the permission explanations in the permission dialog Systems /App developer/Not sure 1

Table 11: Coding categories for decision factors in the interview study.
Subtheme Description Examples
Background Participants mention when the app will access the resources “For microphone, I always concern that some people may
access in the background listen in my conversations, you know, they have access to that.”
Data Participants mention whether the app will collect/transfer “They can get my data, their database may leak my information.
transmission users’ data and use it for other things. The other way is that they can get your data through some network.

As long as your data go through the network, there are some risks.”
Brand Participants mention about the app’s reputation “I usually trust the big-companies apps more, [because] I know better
reputation in security or protecting users’ privacy. about them. They should be more secure.”
Rating Participants mention about ratings of the apps. “They can provide something to help users differentiate good apps or

bad apps, [that] is helpful, like ratings.”
Review Participants mention about reviews of the apps. “I would like to see some reviews from authorities.”

views for a popular free game, “Color Bump 3D”, but found
only 14 reviews are related to permissions. Thus, it is hard for
users to find such information from reviews by themselves.
In survey 2, we also presented permission-related reviews to
users to see if reviews are helpful to decision making.

Grant rate. This factor refers to what proportion of previ-
ous users granted a permission to the same app. Previous work
explored the feasibility of crowd-sourcing users’ decisions
to help users in making permission decisions [25, 47]. The
permission settings or privacy expectations from many users
were collected and presented to other users when requesting
permissions, which has a major impact on users’ feelings and
their decisions.

6.2 Factors’ Impact on Permission Decision
We designed three meaningful scenarios to simulate permis-

sion requests from real apps in different contexts. In survey 2,
each respondent was provided with only positive or negative
messages regarding one decision factor in all three scenar-
ios (§3.3.1) and was asked to rate the helpfulness of the factor.
We discuss the major results as follows.
Finding 8: For the same decision factor, negative messages
are more likely to impact users’ decisions compared with
positive messages.

The change rates for messages in each scenario are in Table
12. For the negative messages, the change rate is the percent-
age of participants who changed their decisions from grant
to deny among all participants who initially chose to grant.
Similarly, for positive messages, the change rate refers to the
percentage of respondents who changed from deny to grant.

We performed Wilcoxon signed rank test to evaluate
whether there is a significant difference in user’s permission
decisions before and after the messages were provided. Ta-
ble 12 shows the significant change rate of both negative and

positive messages in blue background. All negative mes-
sages have a significant change rate (p<0.05), but less than
half of positive messages have a significant change rate. In
addition, most negative messages have a higher change rate
than the corresponding positive messages for the same factor,
with five exceptions (marked in bold in Table 12).

We used the two-tailed Mann-Whitney U test to measure
the differences between the change rates of positive and nega-
tive messages. Table 12’s p-value columns show the results.
Three quarters (27 out of 36) of the change rates are signifi-
cantly different. These results suggest that negative messages
are more likely to impact users’ decisions than positive mes-
sages. Negative messages may remind users of the potential
risks and reconsider their permission decisions.

Interestingly, eight participants changed their decision from
grant to deny after being presented with positive messages
(background access and data transmission with LCGE). The
reason may be that these participants are very cautious with
their location data. Even though the messages are positive,
they may be reminded of the potential risks of leaking their
locations and thus denied the permission. One participant puts

“Location will be noticed, because that may [have] risks.”
Finding 9: Users found background access the most helpful
while grant rate the least helpful in permission decisions.
For the same decision factor, users tended to find the infor-
mation more helpful if negative messages were shown.

At the end of survey 2, we asked the respondents to rate
the helpfulness of the provided messages. Table 13 shows the
results. We computed the average helpfulness score of each
factor with positive and negative messages. Grant rate has the
lowest score: 33 respondents rated this factor as “not helpful
at all” (-2). Users would make permission decisions based on
their own needs, which may differ from other users’.

USENIX Association 30th USENIX Security Symposium 763

Table 12: The change rate for the negative (Neg.) and positive (Pos.) messages for each decision factor. For negative messages, the change rate
is the percentage of users who change their decision from ‘Allow’ to ‘Deny’, while for positive from ‘Deny’ to ‘Allow’. We mark the change
rate in blue if the rate’s p-value is significant at α = 0.05 in Wilcoxon Signed Rank Test. The column of p-value represents the two-tailed
Mann–Whitney U test results of the change rate differences between positive and negative messages.

Scenario Felp RShare LCGE
Android iOS Android iOS Android iOSChange rate % Neg. Pos. p-value Neg. Pos. p-value Neg. Pos. p-value Neg. Pos. p-value Neg. Pos. p-value Neg. Pos. p-value

Background access 46.4 7.7 0.000* 30.3 7.7 0.000* 33.3 15.0 0.004* 16.7 6.7 0.002* 28.6 41.7 0.344 46.2 20.0 0.114
Data transmission 24.0 21.4 0.001* 35.0 12.5 0.000* 22.6 33.3 0.030* 20.0 12.0 0.000* 10.5 10.0 0.019* 12.8 46.7 0.412
Rating 61.5 3.1 0.000* 31.0 20.0 0.007* 50.0 10.0 0.001* 34.4 15.8 0.005* 61.0 41.7 0.349 25.6 36.4 0.261
Review 48.0 6.7 0.000* 47.6 5.3 0.000* 39.4 0.0 0.000* 17.2 12.5 0.000* 32.4 23.1 0.075 42.1 0.0 0.008*
Grant rate 37.0 0.0 0.000* 58.3 11.1 0.000* 36.1 5.9 0.002* 42.9 0.0 0.000* 28.9 18.2 0.069 28.6 0.0 0.013*
Brand reputation 52.0 17.9 0.000* 22.6 12.9 0.000* 34.5 33.3 0.079 16.2 16.7 0.005* 47.2 28.6 0.117 42.5 15.4 0.040*

Table 13: Helpfulness scores of the decision factors in the negative
and positive message framing groups. p-value represents testing
result of the helpfulness rating is different between positive and
negative group in two-tailed Mann–Whitney U test.

Negative Positive
+2 +1 ±0 -1 -2 avg. +2 +1 ±0 -1 -2 avg. p-value

Background. 55 28 9 4 4 1.26 41 34 17 6 2 1.06 0.085
Data trans. 25 32 23 12 8 0.54 31 35 19 9 6 0.76 0.097
Rating 42 40 11 4 3 1.14 32 37 16 5 10 0.76 0.008*
Review 38 31 13 10 8 0.81 23 35 20 11 11 0.48 0.034*
Grant rate 25 30 14 17 14 0.35 19 26 19 17 19 0.09 0.094
Brand repu. 46 34 14 5 1 1.19 39 35 16 8 2 1.01 0.098

We observe that for the same decision factor respondents
found negative messages more helpful than positive messages.
For most factors, the average scores of negative messages
are much higher than positive messages. This conforms with
our previous finding: negative messages are more likely to
affect users’ permission decisions. For data transmission, the
negative messages’ score is lower than positive messages’. A
potential reason is that regarding data transmission, the posi-
tive messages surprise users more than the negative message.
Users may already anticipate their data will be transmitted
after collection, in accordance with the negative messages. In
contrast, the positive messages break their negative expecta-
tions and make them feel comfortable to grant a permission.

We also observe that the helpfulness scores from users
who changed their decisions in any of the scenarios (n=345,
µ=1.36) are significantly higher than those from users who
changed no decision (n=855, µ=0.56) (χ2 = 368.5, p<0.001).
As for demographics, the respondents with experience in com-
puter science or related fields are significantly less likely
to change their decisions in the simulated scenarios. (U =
135693.0, p<0.001; two-tailed) No significant difference was
observed between the scores from Android and iOS users.
Answer to RQ3: We studied six factors that can affect
user’s permission decisions: background access, data trans-
mission, brand reputation, rating, review and grant rate,
among which, background access and brand reputation
were rated the most helpful by the users. We also found that
negative messages related to the factors can have a stronger
impact on users’ permission decisions.

7 Related work
Install-time permission comprehension. Several works
have studied user comprehension of permissions in the install-
time permission model [36,39,43]. Felt et al. found that most
users do not pay attention to the permission notices shown be-
fore app installation or do not understand the risks behind the
permissions [39]. Kelley et al. found the users can not make
informed decisions that based on the technical descriptions for
permissions [43]. While these studies shared similar method-
ologies as our work, they focused on user comprehension in
the install-time model. Compared with the install-time model,
runtime permission dialogs use brief descriptions to describe
permission in groups to avoid interrupting users for a long
time. This calls for the need to study how users comprehend
the permission groups with brief descriptions. We studied
this problem with a mixed-methods approach, and found that
many users still miscomprehend certain permission groups
based on current descriptions (§5).

Felt et al. [36] were among the first to study Android app
overprivilege problem where apps request permissions that
they do not use. Such problems can be mitigated in the run-
time permission model if users can deny the unnecessary
permission requests. However, we found that users have mis-
perceptions in certain permission groups based on the infor-
mation provided by the systems. Therefore, users may not
notice such overprivileged apps. This urges the need to im-
prove the design of permission systems and reduce users’
misperceptions.
Permission model change. Andriotis et al. [27] studied users’
adaptation to the new Android runtime permission model by
analyzing the permission settings of 50 users. Their study
focused on users’ general permission settings as well as
users’ viewpoint when just adapting to the runtime permission
model. Our study focuses on the problem of low-version apps
and their prevalence three years after the runtime permission
model has been introduced. Surprisingly, we found that low-
version apps are still widely installed and one-third users have
confusion on their behavior of requesting permissions (§4).
Rationale messages in requesting permissions. Previous
works studied the rationale messages provided by app devel-

764 30th USENIX Security Symposium USENIX Association

opers [30, 50, 57]. Bonné et al. [30] found that users grant
or deny a permission based on their expectation on whether
an app needs the permission. Both Android and iOS adopt
the practice to let app developers provide rationale messages
to explain how permissions are used [16, 19]. However, only
relying on app developers providing rationale messages suffer
from several problems [50, 57]. First, app developers may not
provide correct and helpful rationale messages. Liu et al. [50]
found that a significant portion of incomplete explanations
only describe basic permissions but hide their usage of other
permissions in the same permission group. Second, Tan et
al. [57] found that most messages only focus on the user ben-
efits but not the potential risks. In comparison, we moved one
step further to investigate what systems can provide to help
users understand permissions (§6).
User concerns in granting permissions. Many previous
works aim to understand what concerns users have when
granting permissions [35, 38, 44, 61]. Inspired by these work,
our study aims to explore what additional information (fac-
tors) that systems can provide to resolve users’ concerns and
assist them in making permission decisions.

Felt et al. [38] surveyed and ranked users’ concerns on risks
related to private data that can be accessed by apps. Their
research goal lies in the selection of private data that should
be protected by permissions and warned to users. Our study
complements their work by focusing on what information can
be provided by the systems to improve users’ understanding
of the permission requests and address their concerns.

Other related works cover certain aspects of the five iden-
tified decision factors. (1) Previous works [28, 35] proposed
program analysis techniques that can detect sensitive data
transmission in Android apps. These techniques can be help-
ful in understanding application sensitive data usage behav-
iors and derive the information related to decision factors. (2)
Previous research on the impact of background access shows
that users are more likely to be uncomfortable with resources
requested in the background and block the requests [51,61,62].
Votipka et al. [61] found that users’ comfort level of the back-
ground resource access depends on the when and why the
resource was used. As a complement, our quantitative study
shows that background access is rated as the most helpful one
among the six decision factors. (3) Previous works found that
app store information of user rating and reviews have signifi-
cant impact on both apps’ improvement [53] and users’ deci-
sion on updating apps [59], but none of them have explored
whether ratings and reviews can help users’ permission deci-
sions. (4) We found no previous work studied the relationship
between brand reputation and users’ permission decisions.
(5) We also included grant rate as one decision factor based
on previous studies [25, 47]. Lin et al. used the percentage
of users that find a permission surprising to remind users at
the install-time warnings [47]. Agarwal et al. [25] used the
collected grant rate to make permission recommendations for
new users However, we found that grant rate is rated as the

least helpful among the six decision factors, even though this
factor will impact many users’ permission decisions (§6.2).

Other previous works in HCI communities explored the
feasibility to incorporate additional information to raise users’
attention to privacy and permissions [44] or help users better
understand permissions through examples [41]. These works
focused more on how to present the information to users;Our
paper studied what should be presented to the users by com-
paring different decision factors (§6) .
Context integrity for mobile privacy. Context integrity [54]
ties privacy protection to specific contexts. Wijesekera et
al. [62] found that users may make different decisions for
the same permission when it is used in different contexts and
further proposed a machine learning approach that leverages
users’ past permission decisions to predict future decisions
each time when permissions are used [63]. Tsai et al. [60]
proposed a context-aware permission manager to help users
flexibly control data access, e.g. only allow data access when
the app is in the foreground. Different contexts can indeed
affect users’ permission decisions. Our study confirms that
background access (or visibility in [62,63]) can affect permis-
sion decisions. However, we focus on more general questions:
(1) whether users can comprehend the permission groups and
their related security risks, and (2) what additional informa-
tion can be provided to enhance user comprehension. Our
work is significant concerning context integrity. First, it is es-
sential to ensure that users make permission decisions when
they can understand the permissions. This is the case espe-
cially when considering context integrity where users’ future
permission decisions can be made based on their previous
ones [63]. Second, we identified decision factors that can af-
fect permission decisions other than the contexts defined by
Wijesekera et al. [62]. These factors may also be used as fea-
tures to improve privacy decision prediction model to make
permission decisions aligning with user preferences [63].
Permission Fatigue. Previous works found that repetitive
warnings can lead to notice fatigue and habituation in software
agreement notices [40], Android install-time notices [37, 39]
and browser security warnings [56]. Our findings provide
hints for addressing the fatigue problem (§6). In order to im-
prove user attentions, systems may allow users to customize
decision factors based on their preferences. In addition, sys-
tems can highlight negative messages to draw users’ attention.
Bravo-Lillo et al. found that forcing users interact with essen-
tial information or adding attractors can effectively increase
user attention and address habituation [32, 33]. Similarly, our
findings in §5.3 suggest that it is necessary to highlight sev-
eral important information (e.g. the provider of permission
explanations) to draw users’ attention.

8 Discussion and Implication
8.1 Explaining permission model changes

In §4, our study disclosed the prevalence of low-version
Android apps as well as users’ common misunderstanding

USENIX Association 30th USENIX Security Symposium 765

on these low-version apps. Low-version apps get all permis-
sions at install-time even on new systems, while most users
mistakenly expect they request permissions at runtime. This
misunderstanding may be potentially taken advantage to by-
pass users’ consent at runtime and cause privacy leakage.

At the same time of our study, two efforts have been made
to mitigate this issue. First, Google Play begins to disallow
uploading low-version apps [11]. Second, Android 10 asks
user to decide to revoke dangerous permissions or not when
the low-version app launches for the first time [22]. However,
these efforts may not resolve the issue in total. First, many low-
version apps uploaded before may still exist on Google play
or third-party app stores. Second, the adoption of Android
10 may take a long time. Users may still be impacted by
low-version if their OSes are not updated to Android 10.

We hope our study can raise people’s awareness of this
issue and inspire future works. First, third-party app stores
may also consider forbidding low-version apps as Google
Play did. Second, system designers may consider giving ex-
plicit warnings of low-version apps to raise users’ attention.
Third and more fundamental, system designers may consider
to examine the comparability mechanism carefully to avoid
similar issues which may confuse users.

8.2 Addressing common misunderstandings
for permission groups

Our findings in §5 indicate that users commonly misun-
derstood the scope of permission groups. We suggest two
potential approaches to reduce misunderstandings: OSes can
(a) provide more explanations in the permission dialog, or (b)
reorganize the permission groups and make them more intu-
itive (e.g., breaking down the permission groups into smaller
ones). However, long explanations or excessive permission
requests during runtime increase users’ recognition burdens,
making them habituate and ignore the explanations [29,37,39].
Future work could therefore explore how best to provide more
explanations while balancing their complexity.

Our findings in §5.3 show that many iOS users commonly
confuse app explanations with system-provided information.
In addition, previous work found that many app-specified ex-
planations only focus on user benefits and provide inaccurate
information on what data will be accessed [50,57]. It is worth-
while to study how to assist app developers in providing better
explanations and how to audit such explanations against app
behaviors to avoid misleading users.

8.3 Addressing concerns with decision factors
In §6, we studied six factors that can affect users’ permis-

sion decisions. We observed that negative messages of the fac-
tors are considered more helpful and more likely to affect user
decisions than the positive ones. Following our findings, fu-
ture work can focus on how to extract information concerning
the factors. Here, we discuss some potential approaches. Inter-
nal factors (i.e., background access and data transmission) can

be collected by OSes. For example, background access can
be tracked by logging related system APIs. Data transmission
can be monitored by combining static and dynamic data flow
analysis [28]. The information can be collected during testing
or in real use. Recent updates in Android [2] and iOS [4]
allow users to choose whether to grant background access to
locations, which notifies users about the potential background
access.

External factors (i.e. rating, review, grant rate and brand rep-
utation) can be collected via crowdsourcing or through trusted
organizations with efforts. Reviews and ratings are available
in app stores. OSes can collect them via information retrieval
techniques and present it to users. Grant rate can be collected
by the phone vendors from their users. Existing security and
privacy standards like ISO/IEC27001 or GDRP [3, 5] may be
used to reflect the company’s reputation in protecting users’
privacy. The general challenge concerning external factors
is that information of these factors may be manipulated by
fraudulent third parties. More efforts are needed to ensure
that the obtained information is trusty.

Our work mainly focuses on the simple variations of the
messages for decision factors, namely positive and negative
messages. Future work may study more fine-grained metrics
on three decision factors (rating/review/grant rate), e.g. how
specific values can impact users’ decisions. Our study also
shows that users’ decisions may change differently for differ-
ent decision factors (Finding 9), which aligns with previous
study that users have different privacy needs [48, 49]. This
implies the necessity for a framework which allows users to
personalize and configure what information to be provided.
Future work may further study users’ capability and willing-
ness to configure these decision factors.

9 Conclusion
Current mobile systems play a neutral role in protecting

users’ private information—they just provide simple descrip-
tions and allow apps to explain their permission request in-
tentions. This can easily lead to unintended privacy leakage
because of users’ poor understandings of the permissions. In
this paper, we investigated the problem through analysis of
real users’ permission settings and large-scale user studies.
We find that users have several common misunderstandings
on certain permission groups and many Android users are not
aware of permission model changes. This motivates system
designers to enhance systems by providing clearer permission-
related information. We further studied what extra information
can be provided by the systems to help users make more in-
formed decisions. Our results suggest that information about
background access and brand reputation were rated the most
helpful and the negative messages related to the factors can
have a stronger impact on users’ decisions. Such results can
guide system designers to select relevant information that can
raise users’ attention when making permission decisions.

766 30th USENIX Security Symposium USENIX Association

Acknowledgments
We greatly appreciate the anonymous reviewers for their

insightful comments and feedback. We thank Shelby Thomas,
C. Ailie Fraser, Vector Guo Li and a host of others in the
Opera group, the Systems and Networking group at UC
San Diego and Whova Inc for useful discussions and paper
proofreading. This work is supported in part by NSF grants
(CNS-1814388, CNS-1526966) and the Qualcomm Chair
Endowment. Lili Wei was supported by the Postdoctoral
Fellowship Scheme by the Hong Kong Research Grant
Council.

References
[1] Android fragmentation keeps getting worse. https://

tinyurl.com/yd78kncd.

[2] Android location updates. https://developer.android
.com/preview/privacy/location.

[3] General data protection regulation gdpr. https://gdpr-
info.eu/.

[4] iOS 13 location updates. https://gimbal.com/ios-13-
location-permissions/.

[5] Iso/iec 27001 information security management standard.
https://www.iso.org/isoiec-27001-information-
security.html.

[6] List of android app stores. https://en.wikipedia.org/
wiki/List_of_Android_app_stores.

[7] Permission checker dataset. https://ucsd
opera.github.io/PermissionStudyUsenix21/dataset/.

[8] Permission checker privacy policy. https://
permissionchecker.github.io/privacy.html.

[9] Permission checker website. https://
permissionchecker.github.io.

[10] Supplementary materials. https://ucsdopera.github.io/
PermissionStudyUsenix21/supplementary.pdf.

[11] Target api level requirements for the play console. https:
//tinyurl.com/y6uu6saz.

[12] ios 6 to seek permission before apps can access personal data.
https://tinyurl.com/yxhz7pz4, 2012.

[13] Meitu has major privacy red flags. https://tinyurl.com/
zd5z5l7, 2017.

[14] 7 in 10 smartphone apps share your data with third-party ser-
vices. https://tinyurl.com/ybe46d3c, 2018.

[15] Android permission overview. https://developer.android
.com/guide/topics/permissions/overview, 2018.

[16] Android request app permissions. https://developer.and
roid.com/training/permissions/requesting, 2018.

[17] Facebook has been collecting call history and sms data from
android. https://tinyurl.com/yb5vkngd, 2018.

[18] Gobuff record and send screen recordings in the background.
https://tinyurl.com/yyzrmbxq, 2018.

[19] ios accessing protected resources. https://tinyurl.com/
ufhfe7c, 2018.

[20] Pokemon go abuse storage read permission to combat rooting.
https://tinyurl.com/y3qkobc9, 2018.

[21] Android official documentation: Requesting permissions
at runtime. https://developer.android.com/training/
permissions/requesting.html, 2019.

[22] Android q privacy update. https://developer.android
.com/about/versions/10/privacy/changes, 2019.

[23] Smartphone users will top 3 billion in 2018, hit 3.8 billion by
2021. https://tinyurl.com/y4mxrqaw, 2019.

[24] Ring for Android reportedly shares your data with third
parties. https://mashable.com/article/ring-third
-party-data/, 2020.

[25] Yuvraj Agarwal and Malcolm Hall. Protectmyprivacy: detect-
ing and mitigating privacy leaks on ios devices using crowd-
sourcing. In Proc. MobiSys, pages 97–110. ACM, 2013.

[26] Hazim Almuhimedi, Florian Schaub, Norman Sadeh, Idris Ad-
jerid, Alessandro Acquisti, Joshua Gluck, Lorrie Faith Cranor,
and Yuvraj . Your location has been shared 5,398 times!: A
field study on mobile app privacy nudging. In Proc. CHI, pages
787–796, 2015.

[27] Panagiotis Andriotis, Martina Angela Sasse, and Gianluca
Stringhini. Permissions snapshots: Assessing users’ adaptation
to the android runtime permission model. In 2016 IEEE WIFS,
pages 1–6. IEEE, 2016.

[28] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bod-
den, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[29] Rainer Böhme and Jens Grossklags. The security cost of cheap
user interaction. In Proc. New Security Paradigms Workshop,
2011.

[30] Bram Bonné, Sai Teja Peddinti, Igor Bilogrevic, and Nina Taft.
Exploring decision making with android’s runtime permission
dialogs using in-context surveys. In Proc. SOUPS, 2017.

[31] Virginia Braun and Victoria Clarke. Using thematic analysis
in psychology. Qualitative research in psychology, 2006.

[32] Cristian Bravo-Lillo, Lorrie Cranor, Saranga Komanduri, Stuart
Schechter, and Manya Sleeper. Harder to ignore? revisiting
pop-up fatigue and approaches to prevent it. In Proc. SOUPS.

[33] Cristian Bravo-Lillo, Saranga Komanduri, Lorrie Faith Cranor,
Robert W Reeder, Manya Sleeper, Julie Downs, and Stuart
Schechter. Your attention please: designing security-decision
uis to make genuine risks harder to ignore. In Proc. SOUPS,
pages 1–12, 2013.

[34] Permission Checker. Permission checker on google play.
https://play.google.com/store/apps/details?id=
com.sbysoft.perchecker, 2018.

[35] William Enck, Peter Gilbert, Seungyeop Han, Vasant Ten-
dulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N Sheth. Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. ACM Transactions on Computer Systems, 2014.

USENIX Association 30th USENIX Security Symposium 767

[36] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song,
and David Wagner. Android permissions demystified. In Proc.
CCS. ACM, 2011.

[37] Adrienne Porter Felt, Serge Egelman, Matthew Finifter, Dev-
datta Akhawe, David Wagner, et al. How to ask for permission.
In HotSec, 2012.

[38] Adrienne Porter Felt, Serge Egelman, and David Wagner. I’ve
got 99 problems, but vibration ain’t one: a survey of smart-
phone users’ concerns. In Proc. of 2nd ACM workshop on
Security and privacy in smartphones and mobile devices, 2012.

[39] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel
Haney, Erika Chin, and David Wagner. Android permissions:
User attention, comprehension, and behavior. In Proc. SOUPS,
page 3. ACM, 2012.

[40] Nathaniel S Good, Jens Grossklags, Deirdre K Mulligan, and
Joseph A Konstan. Noticing notice: a large-scale experiment
on the timing of software license agreements. In Proc. CHI,
pages 607–616, 2007.

[41] Marian Harbach, Markus Hettig, Susanne Weber, and Matthew
Smith. Using personal examples to improve risk communi-
cation for security & privacy decisions. In Proc. CHI, pages
2647–2656. ACM, 2014.

[42] Andrew F Hayes and Klaus Krippendorff. Answering the call
for a standard reliability measure for coding data. Communi-
cation methods and measures, 1(1):77–89, 2007.

[43] Patrick Gage Kelley, Sunny Consolvo, Lorrie Faith Cranor,
Jaeyeon Jung, Norman Sadeh, and David Wetherall. A co-
nundrum of permissions: installing applications on an android
smartphone. In Intl. conf. on financial cryptography and data
security. Springer, 2012.

[44] Patrick Gage Kelley, Lorrie Faith Cranor, and Norman Sadeh.
Privacy as part of the app decision-making process. In Proc.
CHI. ACM, 2013.

[45] Frauke Kreuter, Stanley Presser, and Roger Tourangeau. Social
desirability bias in cati, ivr, and web surveysthe effects of mode
and question sensitivity. Public opinion quarterly, 2008.

[46] Jon A Krosnick. Survey research. Annual review of psychology.

[47] Jialiu Lin, Shahriyar Amini, Jason I Hong, Norman Sadeh,
Janne Lindqvist, and Joy Zhang. Expectation and purpose:
understanding users’ mental models of mobile app privacy
through crowdsourcing. In Proc. Ubicomp. ACM, 2012.

[48] Bin Liu, Mads Schaarup Andersen, Florian Schaub, Hazim Al-
muhimedi, Shikun Aerin Zhang, Norman Sadeh, Yuvraj Agar-
wal, and Alessandro Acquisti. Follow my recommendations:
A personalized privacy assistant for mobile app permissions.
In Proc. SOUPS, 2016.

[49] Bin Liu, Deguang Kong, Lei Cen, Neil Zhenqiang Gong,
Hongxia Jin, and Hui Xiong. Personalized mobile app rec-
ommendation: Reconciling app functionality and user privacy
preference. In Proc. WSDM, 2015.

[50] Xueqing Liu, Yue Leng, Wei Yang, Wenyu Wang, Chengxiang
Zhai, and Tao Xie. A large-scale empirical study on android
runtime-permission rationale messages. In IEEE VL/HCC,
pages 137–146. IEEE, 2018.

[51] Kristopher Micinski, Daniel Votipka, Rock Stevens, Nikolaos
Kofinas, Michelle L Mazurek, and Jeffrey S Foster. User inter-
actions and permission use on android. In Proc. CHI, pages
362–373. ACM, 2017.

[52] Muhammad Baqer Mollah, Md Abul Kalam Azad, and Athana-
sios Vasilakos. Security and privacy challenges in mobile cloud
computing: Survey and way ahead. Journal of Network and
Computer Applications, 84:38–54, 2017.

[53] Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven
Bugiel. Short text, large effect: Measuring the impact of user
reviews on android app security and privacy. In IEEE S&P.
IEEE, 2019.

[54] Helen Nissenbaum. Privacy as contextual integrity. Wash. L.
Rev., 79:119, 2004.

[55] Elissa M Redmiles, Ziyun Zhu, Sean Kross, Dhruv Kuchhal,
Tudor Dumitras, and Michelle L Mazurek. Asking for a friend:
Evaluating response biases in security user studies. In Proc.
CCS, pages 1238–1255. ACM, 2018.

[56] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha
Atri, and Lorrie Faith Cranor. Crying wolf: An empirical study
of ssl warning effectiveness. In USENIX security symposium,
pages 399–416, 2009.

[57] Joshua Tan, Khanh Nguyen, Michael Theodorides, Heidi
Negrón-Arroyo, Christopher Thompson, Serge Egelman, and
David Wagner. The effect of developer-specified explanations
for permission requests on smartphone user behavior. In Proc.
CHI, pages 91–100. ACM, 2014.

[58] Christopher Thompson, Maritza Johnson, Serge Egelman,
David Wagner, and Jennifer King. When it’s better to ask
forgiveness than get permission: attribution mechanisms for
smartphone resources. In Proc. SOUPS, pages 1–14, 2013.

[59] Yuan Tian, Bin Liu, Weisi Dai, Blase Ur, Patrick Tague, and
Lorrie Faith Cranor. Supporting privacy-conscious app update
decisions with user reviews. In Proc. ACM CCS Workshop
on Security and Privacy in Smartphones and Mobile Devices,
pages 51–61, 2015.

[60] Lynn Tsai, Primal Wijesekera, Joel Reardon, Irwin Reyes,
Serge Egelman, David Wagner, Nathan Good, and Jung-Wei
Chen. Turtle guard: Helping android users apply contextual
privacy preferences. In Proc. SOUPS, 2017.

[61] Daniel Votipka, Seth M Rabin, Kristopher Micinski, Thomas
Gilray, Michelle L Mazurek, and Jeffrey S Foster. User com-
fort with android background resource accesses in different
contexts. In Proc. SOUPS, pages 235–250, 2018.

[62] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge
Egelman, David Wagner, and Konstantin Beznosov. Android
permissions remystified: A field study on contextual integrity.
In USENIX Security Symposium, pages 499–514, 2015.

[63] Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Reardon,
Serge Egelman, David Wagner, and Konstantin Beznosov. The
feasibility of dynamically granted permissions: Aligning mo-
bile privacy with user preferences. In IEEE S&P, pages 1077–
1093. IEEE, 2017.

768 30th USENIX Security Symposium USENIX Association

