PYLIVE: On-the-Fly Code Change for
Python-based Online Services

Haochen Huang’, Chengcheng Xiang’, Li Zhong, Yuanyuan Zhou

5 UC San Diego

* Co-first authors.

Python is widely adopted in online services.

o 9 O ™

Web framework Web server
0>
@ 33 dhig
\ / oOO0
E-commerce Message queue

Python-based
frameworks

Commercial
companies

Online services have high requirements on

availability

SSSSSSSS

Lifestyle RealEstate Tech TV Podcasts More : Q I

Google lost|$1.7M|in ad revenue

during YouTube outage, expert says

#InstagramDown: An hour's outage may have cost
photo-sharing app|S1.2 mn

By Anumeha Chaturvedi, ET Bureau Last Updated: Oct 04, 2018, 11:53 AM IST

Amazon's one hour of downtime on Prime Day

may have cost it up to

Sean Wolfe Jul19,2018,7:53 AM

$100 million

in lost sales

f

~

~

Requires >
99.99% of uptime!

Code changes are necessary for online services:

i
|8z

W
===_.0m8: -8 SRRNEY:.

_ |

|

|

___________,_,r_

|||||| -___---m—m

&%

Urgent dynamic patching

On-the-fly profiling

On-the-fly logging

Code changes are necessary for online services:

&

On-the-fly logging On-the-fly profiling Urgent dynamic patching
-+ High availability N

PYLIVE: dynamically change Python programs
in production without restarting them

s
|LI
=

=

i
fe=—-

[]
[}
I
[}
=
|
.
i (68
V.
V.
It
fust.
Tust.)
)
usal
fusol.
py 1017

A common system update practice — Rollout
Deployment

Version N Version N+1 Version N+1
Version N |:> Version N |:> e Version N+1
Version N Version N Version N+1

State 0 State 1 Final state

Rollout is not the best choice for dynamic
logging and profiling

Rollout requires restart &

-

Rollout is

Rollout is not the best choice for dynamic
logging and profiling

Rollout requires restart & PYLIVE requires

J]

Rollout is PYLIVE is

&
&
PYLIVE complements
Rollout deployment 8

Python’s language features ease the code change

e Build on standard Python interpreter:

A. code = D. code

(function body/interface)

Meta-object Protocol Interfacgs to dynamically
modify metadata CA =D

(class attributes)

Python’s language features ease the code change

e Build on standard Python interpreter:

Meta-object Protocol

Dynamic Typing

Interfaces to dynamically
modify metadata

A.

code =

(function body/interface)

C.A =

(class attributes)

D.

D

code

Allows changing
variable types

10

PYLIVE’s Interfaces

Instrument

Instrument log/profiling
code to specified locations

instrument (scope,
jointpoint callback,
time)

11

PYLIVE’s Interfaces

Instrument Instrument
code to

An example of

instrument code to all functions of two classes

instrument (

scope=[‘...Class_A.x",
'...Class_B.x'],

jointpoint_callback={func_before: call b,
func_end: call_a},

time='24:00-2:00")

instrument (scope,
jointpoint callback,
time)

using PYLIVE --
diagnose a critical performance issue in e-commerce.

PYLIVE’s Interfaces

Inst { instrument (scope,
Instrument nstrumen jointpoint callback,
code to . -
time)
An example of using PYLIVE --
diagnose a critical performance issue in e-commerce.
instrument code to all functions of two classes # profiling code to instrument
instrument(scope=[‘...Class_A.x*", def call_b(start):
' ..Class B.x'], start = time.time()
jointpoint_callbackf{func_before: call_b, def call_a(start):
func_end: call aF}, logging.info(time.time()-start)

time='24:00-2:00")
13

PYLIVE’s Interfaces

Instrument Instrument
code to

instrument (scope,
jointpoint callback,
time)

An example of using PYLIVE --
diagnose a critical performance issue in e-commerce.

instrument code to all functions of two classes
instrument(scope=[‘...Class_A.x"',
'...Class_B.x'],
jointpoint_callback={func_before: call_b,
func_end: call_a},

time='24:00-2:00")

14

PYLIVE’s Interfaces

Instrument

Redefine

prepFunc:
old_new_map:

safepoint:

Instrument log/profiling
code to specified locations

instrument (scope,
jointpoint callback,
time)

Replace existing code with

redefine (prepFunc,
old new map,

new ones safepoint)
from ... import ...
{'old_func' . new_func}

{'class.new_field': field_init}

"FUNC_QUIESCENCE"

Three challenges with PYLIVE

Challenge 1: How to support dynamic changes for

and ?

Challenge 2: How to identify
without causing problems?

Challenge 3: How to update programs with
?

to apply a change

and

(Check paper for details)

16

Challenge 1: Support Dynamic Changes

Change function interface/body

A. code .CO_varnames

- function interface Dygmi ¢ typing

A. code

- function body Bytecode rewriting (instrument)

- caller functions Not necessary with interpreter’s
function look up mechanism.

Challenge 1: Support Dynamic Changes

Change data structure

- class attributes

- object attributes

- methods

Meta-object Protocol

Meta-object Protocol
Garbage Collection

Meta-object Protocol

18

Challenge 2: Identify Safe Change Point

e Carefully choose a safe point to apply a change.

19

Challenge 2: Identify Safe Change Point

e Carefully choose a safe point to apply a change.

Type 1: of

the changed functions

Functions ; f1
to be changed :

On stack?

gThread1 Thread 2 20

Challenge 2: Identify Safe Change Point

e Carefully choose a safe execution point to apply a change.

def file move save():
locks.lock(fd, ...) Unsafe points

e +—> to change
locks.unlock (£d) lock () /unlock ()

An example of unsafe change points for a patch from Django

21

Challenge 2: Identify Safe Change Point

e Carefully choose a safe execution point to apply a change.

Type 2: Consistent

state check

def file move save():

locks.lock(fd, ...) ynsafe points

e +—> to change
locks.unlock (£d) lock () /unlock ()

An example of unsafe change points for a patch from Django

def state check func():
for fd in all fds():
if locks.check lock(fd) !'=
locks .UNLOCK:
return False
return True

——————_—_ e e — a1

An example of state check function

Evaluation of PYLIVE
Application | Category | Logging | Profiling | Patching

Django Web framework 1 0 2
Gunicorn Web server 0 0 1
Oscar E-commerce 1 2 1
Odoo E-commerce 1 1 2
Shuup E-commerce 1 0 1
Pretix E-commerce 1 0 1
Saleor E-commerce 1 1 2
Total: 6 4 10

20 real-world cases evaluated in our experiments.

Evaluation of PYLIVE

e Performance benefit of PYLIVE to apply code changes.

o Throughput as the performance metric.
o Compare it with restarting services.

o For profiling, also compare PYLIVE with cProfile.

24

Evaluation of PYLIVE

e Performance benefit of PYLIVE when Logging

1.0 — —-
'~
| /

O o | /
N3 | /
®< ' /
£ 20 0.5 ‘ -7
- /
S 9 1 Pt Normal run
=5 Vg — PyLive with logging

0.0- @ —==Restart with logging

I I I I
0 1 2 3 le é
Timestamp (minutes)

3 secs downtime

25

Evaluation of PYLIVE

e Performance benefit of PYLIVE when Logging

1.0- 4 k %-
|

/
=
o5 ‘ /
= 2 ,
g &0 (.5~ ‘ _/
S O 1 I A O Normal run
-\ 7

PyLive with logging
—==Restart with logging

-
o
1
23
/

0 1 2 3 1 5
Timestamp (minutes)

3 secs downtime 2.3 minutes warmup time

26

Evaluation of PYLIVE

e Performance benefit of PYLIVE when Logging

1.0 - Ak %k —.

T - / \ .
832 || / < 0.1% overhead
2 (.54 I S
€3 | V2 .
590 1 —_~ Normal run
=c i7"\
JF)

PyLive with logging
—==Restart with logging

0 1 2 3 1 5
Timestamp (minutes)

3 secs downtime

-
o
1
23
/

2.3 minutes warmup time 27

Evaluation of PYLIVE

e Performance benefit of PYLIVE when Profiling

1.0

Normalized
throughput
(@)
7

II Normal run
S — PyLive with profiling
- |)]
0.04 ————— Restart with cProfile
| | | T T I T
0 2 4 6 8 10 12

Timestamp (minutes)

Evaluation of PYLIVE

e Performance benefit of PYLIVE when Profiling

1.0

f--,\,’\vl\

/ -0

’—~,

Normal run

Normalized
throughput
(@)
7

, — PyLive with profiling

s . :
(Il,' ———————— -) Restart with cProfile
} \)

=
o
l

I Ll I I I I I
0/2 4 6 8 10 12

Timgstamp (minutes)
3 secs downtime

4.5 minutes warmup time

29

Evaluation of PYLIVE

e Performance benefit of PYLIVE when Profiling

S

1.0 /&
FE -
___8- | --,\,’\0/__.—’——, \
© a |
e 0.5 | %
5 e I II Normal run
=5 ‘ /I — PyLive with profiling
7’ : :
———————— - -—--—- Restart with cProfile
0.0- Cb
T ‘r)\ T T T T T
0 / 2 4 § 8 10 12

3 secs downtime

Timestamp (minutes)

4.5 minutes warmup time

—> 1.4% overhead

35% overhead
for CProfile

30

Summary

e Build PYLIVE to support on-the-fly logging, profiling and patching in
production-run systems without restarting.
o Relies on standard Python interpreters.
o Avoids service downtime and warmup time. Little overhead for profiling.

e Evaluate PYLIVE on 20 existing real-world cases and two new performance
issues.

31

Thank you!

Contact: hhuang@ucsd.edu

32

