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Python is widely adopted in online services.
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Online services have high requirements on

availability
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#InstagramDown: An hour's outage may have cost
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Amazon's one hour of downtime on Prime Day

may have cost it up to
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Code changes are necessary for online services:
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Urgent dynamic patching

On-the-fly profiling

On-the-fly logging



Code changes are necessary for online services:

&

On-the-fly logging On-the-fly profiling Urgent dynamic patching
-+ High availability N

PYLIVE: dynamically change Python programs
in production without restarting them
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A common system update practice — Rollout
Deployment

Version N Version N+1 Version N+1
Version N |:> Version N |:> e Version N+1
Version N Version N Version N+1

State 0 State 1 Final state



Rollout is not the best choice for dynamic
logging and profiling

Rollout requires restart &
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Rollout is not the best choice for dynamic
logging and profiling

Rollout requires restart & PYLIVE requires
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Rollout is PYLIVE is
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PYLIVE complements
Rollout deployment 8



Python’s language features ease the code change

e Build on standard Python interpreter:

A. code = D. code

(function body/interface)

Meta-object Protocol Interfacgs to dynamically
modify metadata CA =D

(class attributes)




Python’s language features ease the code change

e Build on standard Python interpreter:

Meta-object Protocol

Dynamic Typing

Interfaces to dynamically
modify metadata

A.

code =

(function body/interface)

C.A =

(class attributes)

D.

D

code

Allows changing
variable types
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PYLIVE’s Interfaces

Instrument

Instrument log/profiling
code to specified locations

instrument (scope,
jointpoint callback,
time)
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PYLIVE’s Interfaces

Instrument Instrument
code to

An example of

# instrument code to all functions of two classes

instrument (

scope=[‘...Class_A.x",
'...Class_B.x'],

jointpoint_callback={func_before: call b,
func_end: call_a},

time='24:00-2:00")

instrument (scope,
jointpoint callback,
time)

using PYLIVE --
diagnose a critical performance issue in e-commerce.




PYLIVE’s Interfaces

Inst { instrument (scope,
Instrument nstrumen jointpoint callback,
code to . -
time)
An example of using PYLIVE --
diagnose a critical performance issue in e-commerce.
# instrument code to all functions of two classes # profiling code to instrument
instrument(scope=[‘...Class_A.x*", def call_b(start):
' ..Class B.x'], start = time.time()
jointpoint_callbackf{func_before: call_b, def call_a(start):
func_end: call aF}, logging.info(time.time()-start)

time='24:00-2:00")
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PYLIVE’s Interfaces

Instrument Instrument
code to

instrument (scope,
jointpoint callback,
time)

An example of using PYLIVE --
diagnose a critical performance issue in e-commerce.

# instrument code to all functions of two classes
instrument(scope=[‘...Class_A.x"',
'...Class_B.x'],
jointpoint_callback={func_before: call_b,
func_end: call_a},

time='24:00-2:00")
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PYLIVE’s Interfaces

Instrument

Redefine

prepFunc:
old_new_map:

safepoint:

Instrument log/profiling
code to specified locations

instrument (scope,
jointpoint callback,
time)

Replace existing code with

redefine (prepFunc,
old new map,

new ones safepoint)
from ... import ...
{'old_func' . new_func}

{'class.new_field': field_init}

"FUNC_QUIESCENCE"




Three challenges with PYLIVE

Challenge 1: How to support dynamic changes for

and ?

Challenge 2: How to identify
without causing problems?

Challenge 3: How to update programs with
?

to apply a change

and

(Check paper for details)
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Challenge 1: Support Dynamic Changes

Change function interface/body

A. code .CO_varnames

- function interface Dygmi ¢ typing

A. code

- function body Bytecode rewriting (instrument)

- caller functions Not necessary with interpreter’s
function look up mechanism.




Challenge 1: Support Dynamic Changes

Change data structure

- class attributes

- object attributes

- methods

Meta-object Protocol

Meta-object Protocol
Garbage Collection

Meta-object Protocol
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Challenge 2: Identify Safe Change Point

e Carefully choose a safe point to apply a change.
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Challenge 2: Identify Safe Change Point

e Carefully choose a safe point to apply a change.

Type 1: of

the changed functions

Functions ; f1
to be changed :

On stack?

gThread1 Thread 2 20



Challenge 2: Identify Safe Change Point

e Carefully choose a safe execution point to apply a change.

def file move save():
locks.lock(fd, ...) Unsafe points

e +—> to change
locks.unlock (£d) lock () /unlock ()

An example of unsafe change points for a patch from Django

21



Challenge 2: Identify Safe Change Point

e Carefully choose a safe execution point to apply a change.

Type 2: Consistent

state check

def file move save():

locks.lock(fd, ...) ynsafe points

e +—> to change
locks.unlock (£d) lock () /unlock ()

An example of unsafe change points for a patch from Django

def state check func():
for fd in all fds():
if locks.check lock(fd) !'=
locks .UNLOCK:
return False
return True

——————_—_ e e — a1

An example of state check function



Evaluation of PYLIVE
Application | Category | Logging | Profiling | Patching

Django Web framework 1 0 2
Gunicorn Web server 0 0 1
Oscar E-commerce 1 2 1
Odoo E-commerce 1 1 2
Shuup E-commerce 1 0 1
Pretix E-commerce 1 0 1
Saleor E-commerce 1 1 2
Total: 6 4 10

20 real-world cases evaluated in our experiments.



Evaluation of PYLIVE

e Performance benefit of PYLIVE to apply code changes.

o Throughput as the performance metric.
o Compare it with restarting services.

o For profiling, also compare PYLIVE with cProfile.
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Evaluation of PYLIVE

e Performance benefit of PYLIVE when Logging
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Evaluation of PYLIVE

e Performance benefit of PYLIVE when Logging
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Evaluation of PYLIVE

e Performance benefit of PYLIVE when Logging
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Evaluation of PYLIVE

e Performance benefit of PYLIVE when Profiling
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Evaluation of PYLIVE

e Performance benefit of PYLIVE when Profiling
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Evaluation of PYLIVE

e Performance benefit of PYLIVE when Profiling
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Summary

e Build PYLIVE to support on-the-fly logging, profiling and patching in
production-run systems without restarting.
o Relies on standard Python interpreters.
o Avoids service downtime and warmup time. Little overhead for profiling.

e Evaluate PYLIVE on 20 existing real-world cases and two new performance
issues.
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Thank you!

Contact: hhuang@ucsd.edu
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