
PYLIVE: On-the-Fly Code Change for
Python-based Online Services

Haochen Huang*, Chengcheng Xiang*, Li Zhong, Yuanyuan Zhou

* Co-first authors. 1

Python is widely adopted in online services.

2

E-commerce

Web framework Web server

Message queue

Commercial
companies

Python-based
frameworks

Online services have high requirements on
availability

3

Requires >
99.99% of uptime!

4

On-the-fly logging On-the-fly profiling Urgent dynamic patching

Code changes are necessary for online services:

PYLIVE: dynamically change Python programs
in production without restarting them

5

On-the-fly logging On-the-fly profiling Urgent dynamic patching

Code changes are necessary for online services:

High availability

Version N

Version N

Version N

Version N

Version N

Version N+1

Version N+1

Version N+1

Version N+1

State 0 State 1 Final state

6

A common system update practice — Rollout
Deployment

...

7

Rollout is not the best choice for dynamic
logging and profiling

Rollout requires restart & loses states.

Rollout is heavyweight & an overkill.

8

Rollout is not the best choice for dynamic
logging and profiling

PYLIVE complements
Rollout deployment

PYLIVE requires no restart.

PYLIVE is dynamic & flexible.

Rollout requires restart & loses states.

Rollout is heavyweight & an overkill.

Python’s language features ease the code change

● Build on standard Python interpreter:

9

Interfaces to dynamically
modify metadata

A.__code__ = D.__code__

C.A = D

(function body/interface)

(class attributes)

Meta-object Protocol

● Build on standard Python interpreter:

10

Interfaces to dynamically
modify metadata

Allows changing
variable types

A.__code__ = D.__code__

C.A = D

(function body/interface)

(class attributes)

A = "1"
A = 1

Python’s language features ease the code change

Meta-object Protocol

Dynamic Typing

PYLIVE’s Interfaces

11

Instrument log/profiling
code to specified locations

instrument(scope,
jointpoint_callback,
time)

Instrument

instrument code to all functions of two classes
instrument(scope=[‘...Class_A.*',

'...Class_B.*'],
jointpoint_callback={func_before: call_b,

func_end: call_a},
time='24:00-2:00')

PYLIVE’s Interfaces

12

Instrument log/profiling
code to specified locations

instrument(scope,
jointpoint_callback,
time)

An example of on-the-fly profiling using PYLIVE --
diagnose a critical performance issue in e-commerce.

Instrument

instrument code to all functions of two classes
instrument(scope=[‘...Class_A.*',

'...Class_B.*'],
jointpoint_callback={func_before: call_b,

func_end: call_a},
time='24:00-2:00')

PYLIVE’s Interfaces

13

Instrument log/profiling
code to specified locations

instrument(scope,
jointpoint_callback,
time)

Instrument

An example of on-the-fly profiling using PYLIVE --
diagnose a critical performance issue in e-commerce.

profiling code to instrument
def call_b(start):

start = time.time()
def call_a(start):

logging.info(time.time()-start)

PYLIVE’s Interfaces

14

Instrument log/profiling
code to specified locations

instrument(scope,
jointpoint_callback,
time)

Instrument

An example of on-the-fly profiling using PYLIVE --
diagnose a critical performance issue in e-commerce.

instrument code to all functions of two classes
instrument(scope=[‘...Class_A.*',

'...Class_B.*'],
jointpoint_callback={func_before: call_b,

func_end: call_a},
time='24:00-2:00')

PYLIVE’s Interfaces

15

redefine(prepFunc,
old_new_map,
safepoint)

Instrument log/profiling
code to specified locations

instrument(scope,
jointpoint_callback,
time)

Replace existing code with
new ones

prepFunc:

old_new_map:

safepoint:

from ... import ...

{'old_func' : new_func}
{'class.new_field': field_init}

"FUNC_QUIESCENCE"

Instrument

Redefine

Three challenges with PYLIVE

Challenge 1: How to support dynamic changes for function interface,
function body and data structure?

16

Challenge 2: How to identify safe change points to apply a change
without causing inconsistency problems?

Challenge 3: How to update programs with multi-threads and multi-
processes? (Check paper for details)

Challenge 1: Support Dynamic Changes

17

A.__code__.co_varnames
Dynamic typing

Not necessary with interpreter’s
function look up mechanism.

A.__code__
Bytecode rewriting (instrument)

Change function interface/body

- function interface

- function body

- caller functions

Challenge 1: Support Dynamic Changes

18

Meta-object Protocol

Meta-object Protocol
Garbage Collection

Meta-object Protocol

Change data structure

- class attributes

- object attributes

- methods

Challenge 2: Identify Safe Change Point
● Carefully choose a safe point to apply a change.

19

Challenge 2: Identify Safe Change Point
● Carefully choose a safe point to apply a change.

20

Type 1: Quiescence of
the changed functions

f2

main

f1

...

Functions
to be changed

stacks

Thread 1 Thread 2

...On stack?

Challenge 2: Identify Safe Change Point
● Carefully choose a safe execution point to apply a change.

21

def file_move_save():
locks.lock(fd, ...)
...
locks.unlock(fd)

}

Unsafe points
to change
lock()/unlock()

An example of unsafe change points for a patch from Django

Challenge 2: Identify Safe Change Point
● Carefully choose a safe execution point to apply a change.

22

def state_check_func():
for fd in all_fds():
if locks.check_lock(fd) !=

locks.UNLOCK:
return False

return True

def file_move_save():
locks.lock(fd, ...)
...
locks.unlock(fd)

}

Unsafe points
to change
lock()/unlock()

An example of unsafe change points for a patch from Django An example of state check function

Type 2: Consistent
state check

Evaluation of PYLIVE

23

Application Category Logging Profiling Patching
Django Web framework 1 0 2
Gunicorn Web server 0 0 1
Oscar E-commerce 1 2 1
Odoo E-commerce 1 1 2
Shuup E-commerce 1 0 1
Pretix E-commerce 1 0 1
Saleor E-commerce 1 1 2
Total: 6 4 10

20 real-world cases evaluated in our experiments.

Evaluation of PYLIVE

24

● Performance benefit of PYLIVE to apply code changes.
○ Throughput as the performance metric.

○ Compare it with restarting services.

○ For profiling, also compare PYLIVE with cProfile.

0 1 2 3 4 5
Timestamp (minutes)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Normal run

PyLive with logging

Restart with logging

Evaluation of PYLIVE
● Performance benefit of PYLIVE when Logging

253 secs downtime

0 1 2 3 4 5
Timestamp (minutes)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Normal run

PyLive with logging

Restart with logging

Evaluation of PYLIVE
● Performance benefit of PYLIVE when Logging

263 secs downtime 2.3 minutes warmup time

0 1 2 3 4 5
Timestamp (minutes)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Normal run

PyLive with logging

Restart with logging

Evaluation of PYLIVE
● Performance benefit of PYLIVE when Logging

273 secs downtime 2.3 minutes warmup time

< 0.1% overhead

Evaluation of PYLIVE
● Performance benefit of PYLIVE when Profiling

28

0 2 4 6 8 10 12
Timestamp (minutes)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Normal run

PyLive with profiling

Restart with cProfile

0 2 4 6 8 10 12
Timestamp (minutes)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Normal run

PyLive with profiling

Restart with cProfile

Evaluation of PYLIVE
● Performance benefit of PYLIVE when Profiling

29

3 secs downtime
4.5 minutes warmup time

0 2 4 6 8 10 12
Timestamp (minutes)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Normal run

PyLive with profiling

Restart with cProfile

Evaluation of PYLIVE
● Performance benefit of PYLIVE when Profiling

30

3 secs downtime
4.5 minutes warmup time

35% overhead
for CProfile

1.4% overhead

Summary
● Build PYLIVE to support on-the-fly logging, profiling and patching in

production-run systems without restarting.
○ Relies on standard Python interpreters.
○ Avoids service downtime and warmup time. Little overhead for profiling.

● Evaluate PYLIVE on 20 existing real-world cases and two new performance
issues.

31

Thank you!

32

Contact: hhuang@ucsd.edu

